1
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
2
|
Maynard SA, Pchelintseva E, Zwi-Dantsis L, Nagelkerke A, Gopal S, Korchev YE, Shevchuk A, Stevens MM. IL-1β mediated nanoscale surface clustering of integrin α5β1 regulates the adhesion of mesenchymal stem cells. Sci Rep 2021; 11:6890. [PMID: 33767269 PMCID: PMC7994456 DOI: 10.1038/s41598-021-86315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1β activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell-matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1β enhances adhesion of hMSCs via increased focal adhesion contacts in an α5β1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1β specifically increases nanoscale integrin α5β1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1β stimulation is partly regulated through integrin α5β1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Ekaterina Pchelintseva
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Limor Zwi-Dantsis
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Anika Nagelkerke
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Sahana Gopal
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Yuri E. Korchev
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Andrew Shevchuk
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Molly M. Stevens
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
3
|
Kahraman NS, Gonen ZB, Sevim DG, Oner A. First Year Results of Suprachoroidal Adipose Tissue Derived Mesenchymal Stem Cell Implantation in Degenerative Macular Diseases. Int J Stem Cells 2021; 14:47-57. [PMID: 33122468 PMCID: PMC7904524 DOI: 10.15283/ijsc20025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background and Objectives This study shows the clinical data of 1-year follow-up of 8 patients with degenerative macular diseases who received suprachoroidal adipose tissue derived mesenchymal stem cell (ADMSC) implantation. Methods and Results This prospective, single-center, phase 1/2 study enrolled 8 eyes of 8 patients with degenerative macular diseases of various reasons who underwent suprachoroidal implantation of ADMSCs. All patients had severe visual field defects and severe visual loss. All patients had defective multifocal electroretinography (mf ERG). The worse eye of the patient was selected for the operation. Patients were evaluated on the first day, first month, sixth month and at 1 year postoperatively. Best corrected visual acuity (BCVA), anterior segment and fundus examination, color photography, optical coherence tomography (OCT) and visual field (VF) examination were carried out at each visit. Fundus fluorescein angiography (FFA) and mfERG recordings were performed at the end of the sixth months. All 8 patients completed the 1 year follow-up. None of them had any systemic or ocular complications. Seven of the patients experienced visual acuity improvement, visual field improvement and improvement in the mfERG recordings. We found choroidal thickening in OCT of the four treated eyes. Conclusions Even though the sample size is small, stem cell treatment with suprachoroidal implantation of ADMSCs seems to be safe and the improvements were encouraging. To optimize the cell delivery technique and to evaluate the effects of this therapy on visual acuity and the quality of life of these patients, future studies with larger number of cases will be necessary.
Collapse
Affiliation(s)
| | | | | | - Ayse Oner
- Ophthalmology Department, Kayseri Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
4
|
Maynard S, Gelmi A, Skaalure SC, Pence IJ, Lee-Reeves C, Sero JE, Whittaker TE, Stevens MM. Nanoscale Molecular Quantification of Stem Cell-Hydrogel Interactions. ACS NANO 2020; 14:17321-17332. [PMID: 33215498 PMCID: PMC7760213 DOI: 10.1021/acsnano.0c07428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 05/07/2023]
Abstract
A common approach to tailoring synthetic hydrogels for regenerative medicine applications involves incorporating RGD cell adhesion peptides, yet assessing the cellular response to engineered microenvironments at the nanoscale remains challenging. To date, no study has demonstrated how RGD concentration in hydrogels affects the presentation of individual cell surface receptors. Here we studied the interaction between human mesenchymal stem cells (hMSCs) and RGD-functionalized poly(ethylene glycol) hydrogels, by correlating macro- and nanoscale single-cell interfacial quantification techniques. We quantified RGD unbinding forces on a synthetic hydrogel using single cell atomic force spectroscopy, revealing that short-term binding of hMSCs was sensitive to RGD concentration. We also performed direct stochastic optical reconstruction microscopy (dSTORM) to quantify the molecular interactions between integrin α5β1 and a biomaterial, unexpectedly revealing that increased integrin clustering at the hydrogel-cell interface correlated with fewer available RGD binding sites. Our complementary, quantitative approach uncovered mechanistic insights into specific stem cell-hydrogel interactions, where dSTORM provides nanoscale sensitivity to RGD-dependent differences in cell surface localization of integrin α5β1. Our findings reveal that it is possible to precisely determine how peptide-functionalized hydrogels interact with cells at the molecular scale, thus providing a basis to fine-tune the spatial presentation of bioactive ligands.
Collapse
Affiliation(s)
| | | | - Stacey C. Skaalure
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Isaac J. Pence
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Charlotte Lee-Reeves
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | | | - Thomas E. Whittaker
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Liu J, Yang L, Wang X, Wang S, Huang Z, Li C, Liu Y, Cheng Y, Liu C, Wang Z. Embryonic stem cell microenvironment enhances proliferation of human retinal pigment epithelium cells by activating the PI3K signaling pathway. Stem Cell Res Ther 2020; 11:411. [PMID: 32967731 PMCID: PMC7509927 DOI: 10.1186/s13287-020-01923-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Retinal pigment epithelium (RPE) replacement has been proposed as an efficacious treatment for age-related macular degeneration (AMD), which is the primary cause of vision loss in the elderly worldwide. The embryonic stem cell (ESC) microenvironment has been demonstrated to enable mature cells to gain a powerful proliferative ability and even enhance the stem/progenitor phenotype via activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As the PI3K signaling pathway plays a pivotal role in proliferation and homeostasis of RPE, we hypothesize that the stemness and proliferative capability of RPE can be enhanced by the ESC microenvironment via activation of the PI3K signaling pathway. METHODS To investigate whether the ESC microenvironment improves the stem cell phenotype and proliferation properties of human RPE (hRPE) cells by regulating the PI3K signaling pathway, primary hRPE cells were cocultured with either ESCs or human corneal epithelial cells (CECs) for 72 h, after which their proliferation, apoptosis, cell cycle progression, and colony formation were assayed to evaluate changes in their biological characteristics. Gene expression was detected by real-time PCR and protein levels were determined by western blotting or immunofluorescence. LY294002, an antagonist of the PI3K signaling pathway, was used to further confirm the mechanism involved. RESULTS In comparison to hRPE cells cultured alone, hRPE cells cocultured with ESCs had an increased proliferative capacity, reduced apoptotic rate, and higher colony-forming efficiency. The expression of the stem cell-associated marker KLF4 and the differentiation marker CRALBP increased and decreased, respectively, in hRPE cells isolated from the ESC coculture. Furthermore, PI3K pathway-related genes were significantly upregulated in hRPE cells after exposure to ESCs. LY294002 reversed the pro-proliferative effect of ESCs on hRPE cells. In contrast, CECs did not share the ability of ESCs to influence the biological behavior and gene expression of hRPE cells. CONCLUSIONS Our findings indicate that the ESC microenvironment enhances stemness and proliferation of hRPE cells, partially via activation of the PI3K signaling pathway. This study may have a significant impact and clinical implication on cell therapy in regenerative medicine, specifically for age-related macular degeneration.
Collapse
Affiliation(s)
- Jiahui Liu
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zheqian Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Chengxiu Liu
- Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Koster C, Wever KE, Wagstaff EL, van den Hurk KT, Hooijmans CR, Bergen AA. A Systematic Review on Transplantation Studies of the Retinal Pigment Epithelium in Animal Models. Int J Mol Sci 2020; 21:E2719. [PMID: 32295315 PMCID: PMC7216090 DOI: 10.3390/ijms21082719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used. METHODS In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays. RESULTS original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; n = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges' g 1.181 (0.471-1.892), n = 6) and b-wave (Hedges' g 1.734 (1.295-2.172), n = 42) amplitudes and improved vision-based behavior (Hedges' g 1.018 (0.826-1.209), n = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 105 versus in the range of 104) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen® RPE. CONCLUSIONS This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen® RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.
Collapse
Affiliation(s)
- Céline Koster
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Kimberley E. Wever
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
| | - Ellie L. Wagstaff
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Koen T. van den Hurk
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Carlijn R. Hooijmans
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
- Department of Ophthalmology, AUMC, AMC, UvA, 1105 AZ Amsterdam, The Netherlands
- Department of Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
7
|
EXPERIMENTAL RATIONALE OF THE USE OF CELL THERAPY FOR THE TREATMENT OF GLAUCOMA OPTICAL NEUROPATHY. EUREKA: HEALTH SCIENCES 2020. [DOI: 10.21303/2504-5679.2020.001187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Development of new effective treatments for glaucomatous optic neuropathy is one of the most acute aspects of modern ophthalmology.
The aim of the work is to investigate the effectiveness of cell therapy with postnatal multipotent neural crest stem cells (NCSCs) using different cell delivery methods in a model of adrenaline-induced glaucoma.
Materials and methods. Glaucoma was induced in Wistar rats by intraperitoneal injections of 10 μg to 15 μg/100 g body weight of 0.18 % adrenaline hydrotartrate. NCSCs were delivered intravenously (5 million cells), retrobulbarly (0.5 million cells) or parabulbarly (0.5 million cells). Histomorphometric analysis of the retina was performed on stained haematoxylin-eosin sections with a thickness of 5 μm one month after the delivery of NCSCs.
Results. NCSCs transplantation by all modes of delivery caused positive morphological changes to varying degrees. Intravenous administration induced a decrease in edema in all retinal layers and a slight restoration of the cytoarchitectonics of the retinal layers. The parabulbar administration of NCSCs led to a decrease in edema and the restoration of the cytoarchitectonics of the layers, most pronouncedly the ganglion cell layer and the inner retinal layer. After the retrobulbar administration of NCSCs, the reduction in edema and restoration of the cytoarchitectonics of the layers were the most pronounced.
Conclusions. According to the results of the study, the positive effect of NCSCs transplantation in an experimental model of glaucoma was the most pronounced following the retrobulbar injection of cells. Further investigations of the mechanisms of the effect of transplanted NCSCs on retinal structure restoration are needed.
Collapse
|
8
|
Szatmári-Tóth M, Ilmarinen T, Mikhailova A, Skottman H, Kauppinen A, Kaarniranta K, Kristóf E, Lytvynchuk L, Veréb Z, Fésüs L, Petrovski G. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium-Role in Dead Cell Clearance and Inflammation. Int J Mol Sci 2019; 20:ijms20040926. [PMID: 30791639 PMCID: PMC6412543 DOI: 10.3390/ijms20040926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Inefficient removal of dying retinal pigment epithelial (RPE) cells by professional phagocytes can result in debris formation and development of age-related macular degeneration (AMD). Chronic oxidative stress and inflammation play an important role in AMD pathogenesis. Only a few well-established in vitro phagocytosis assay models exist. We propose human embryonic stem cell-derived-RPE cells as a new model for studying RPE cell removal by professional phagocytes. The characteristics of human embryonic stem cells-derived RPE (hESC-RPE) are similar to native RPEs based on their gene and protein expression profile, integrity, and barrier properties or regarding drug transport. However, no data exist about RPE death modalities and how efficiently dying hESC-RPEs are taken upby macrophages, and whether this process triggers an inflammatory responses. This study demonstrates hESC-RPEs can be induced to undergo anoikis or autophagy-associated cell death due to extracellular matrix detachment or serum deprivation and hydrogen-peroxide co-treatment, respectively, similar to primary human RPEs. Dying hESC-RPEs are efficiently engulfed by macrophages which results in high amounts of IL-6 and IL-8 cytokine release. These findings suggest that the clearance of anoikic and autophagy-associated dying hESC-RPEs can be used as a new model for investigating AMD pathogenesis or for testing the in vivo potential of these cells in stem cell therapy.
Collapse
Affiliation(s)
- Mária Szatmári-Tóth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Tanja Ilmarinen
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Alexandra Mikhailova
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Heli Skottman
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland.
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Eye Clinic, University Hospital Giessen and Marburg GmbH, Campus Giessen, 35390 Giessen, Germany.
| | - Zoltán Veréb
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Goran Petrovski
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| |
Collapse
|
9
|
Cislo-Pakuluk A, Marycz K. A Promising Tool in Retina Regeneration: Current Perspectives and Challenges When Using Mesenchymal Progenitor Stem Cells in Veterinary and Human Ophthalmological Applications. Stem Cell Rev Rep 2018. [PMID: 28643176 PMCID: PMC5602072 DOI: 10.1007/s12015-017-9750-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Visual impairment is a common ailment of the current world population, with more exposure to CCD screens and fluorescent lighting, approximately 285 billion people suffer from this deficiency and 13% of those are considered clinically blind. More common causes for visual impairment include age-related macular degeneration (AMD), glaucoma and diabetic retinopathy (Zhu et al. Molecular Medicine Reports, 2015; Kolb et al. 2007; Machalińska et al. Current Eye Research, 34(9),748-760, 2009) among a few. As cases of retinal and optic nerve diseases rise, it is vital to find a treatment, which has led to investigation of the therapeutic potential of various stem cells types (Bull et al. Investigative Opthalmology & Visual Science, 50(9), 4244, 2009; Bull et al. Investigative Opthalmology & Visual Science, 49(8), 3449, 2008; Yu et al. Biochemical and Biophysical Research Communications, 344(4), 1071-1079, 2006; Na et al. Graefe's Archive for Clinical and Experimental Ophthalmology, 247(4), 503-514, 2008). In previous studies, some of the stem cell variants used include human Muller SCs and bone marrow derived SCs. Some of the regenerative potential characteristics of mesenchymal progenitor stem cells (MSCs) include their multilineage differentiation potential, their immunomodulatory effects, their high proliferative activity, they can be easily cultured in vitro, and finally their potential to synthesize and secrete membrane derived vesicles rich in growth factors, mRNA and miRNA which possibly aid in regulation of tissue damage regeneration. These facts alone, explain why MSCs are so widely used in clinical trials, 350 up to date (Switonski, Reproductive Biology, 14(1), 44-50, 2014). Animal studies have demonstrated that sub-retinal transplantation of MSCs delays retinal degeneration and preserves retinal function through trophic response (Inoue et al. Experimental Eye Research, 85(2), 234-241, 2007). Umbilical cord derived MSCs (UC/MSCs) have also been shown to contain neuroprotective features of ganglion cells in rat studies (Zwart et al. Experimental Neurology, 216(2), 439-448, 2009). This review aims to present current MSC therapies in practice, as well as their retinal regeneration potential in animal models, and their innovative prospects for treatment of human retinal diseases.
Collapse
Affiliation(s)
- Anna Cislo-Pakuluk
- Veterinary Clinic, Trzebnicka", Kościuszki 18, 55-100, Trzebnica, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
10
|
O'Day E, Hosta-Rigau L, Oyarzún DA, Okano H, de Lorenzo V, von Kameke C, Alsafar H, Cao C, Chen GQ, Ji W, Roberts RJ, Ronaghi M, Yeung K, Zhang F, Lee SY. Are We There Yet? How and When Specific Biotechnologies Will Improve Human Health. Biotechnol J 2018; 14:e1800195. [PMID: 29799175 DOI: 10.1002/biot.201800195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Patient X: A 67-year-old Caucasian man slips on a patch of ice. He has abrasions to his hands and has sustained significant damage to his hip. At the emergency room, he informs clinicians he takes atorvastatin, metformin, and glimepiride to treat hypertension and Type 2 Diabetes Mellitus (T2DM). X-rays reveal a fractured hip, which will require total hip replacement surgery.
Collapse
Affiliation(s)
- Elizabeth O'Day
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Olaris Therapeutics, Inc., 45 Moulton St., Cambridge, MA, 02138, USA
| | - Leticia Hosta-Rigau
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Diego A Oyarzún
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.,EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK
| | - Hideyuki Okano
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Víctor de Lorenzo
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,National Center of Biotechnology CSIC, Systems Biology Program, Campus de Cantoblanco, E-28049, Madrid, Spain
| | - Conrad von Kameke
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,BioInnovators Europe, Berlin, Germany
| | - Habiba Alsafar
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Khalifa University Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Cong Cao
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,University of Nottingham, 199 East Taikang Road, Ningbo, 315100, China
| | - Guo-Qiang Chen
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Center for Synthetic and Systems Biology, MOE Lab for Industrial Biocatalysis, Tsinghua-Peking University Center of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weizhi Ji
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Kunming University of Science and Technology, 727 Jingming South Rd. Chenh Gong, Kunming, 650500, Yunnan, China
| | - Richard J Roberts
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Mostafa Ronaghi
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Illumina Inc., 5200 Illumina Way, San Diego, CA, 92121, USA
| | - Karen Yeung
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Law School and School of Computer Science University of Birmingham, Birmingham, UK, B15 2TT
| | - Feng Zhang
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sang Yup Lee
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Chemical and Biomolecular Engineering (BK21 Plus program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Daejeon, 34141, Republic of Korea.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, Wehland M, Wise P, Infanger M, Mann V, Sundaresan A. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Stem Cells Dev 2018; 27:787-804. [PMID: 29596037 DOI: 10.1089/scd.2017.0242] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.
Collapse
Affiliation(s)
- Daniela Grimm
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Marcel Egli
- 3 Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts , Hergiswil, Switzerland
| | - Marcus Krüger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Stefan Riwaldt
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Thomas J Corydon
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,4 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | - Sascha Kopp
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Markus Wehland
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Petra Wise
- 5 Hematology/Oncology, University of Southern California , Children's Hospital Los Angeles, Los Angeles, California
| | - Manfred Infanger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Vivek Mann
- 6 Department of Biology, Texas Southern University , Houston, Texas
| | | |
Collapse
|
12
|
Limoli PG, Vingolo EM, Limoli C, Scalinci SZ, Nebbioso M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J Vis Exp 2018. [PMID: 29553543 DOI: 10.3791/56469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study is aimed at examining whether a suprachoroidal graft of autologous cells can improve best corrected visual acuity (BCVA) and responses to microperimetry (MY) in eyes affected by dry Age-related Macular Degeneration (AMD) over time through the production and secretion of growth factors (GFs) on surrounding tissue. Patients were randomly assigned to each study group. All patients were diagnosed with dry AMD and with BCVA equal to or greater than 1 logarithm of the minimum angle of resolution (logMAR). A suprachoroidal autologous graft by Limoli Retinal Restoration Technique (LRRT) was carried out on group A, which included 11 eyes from 11 patients. The technique was performed by implanting adipocytes, adipose-derived stem cells obtained from the stromal vascular fraction, and platelets from platelet-rich plasma in the suprachoroidal space. Conversely, group B, including 14 eyes of 14 patients, was used as a control group. For each patient, diagnosis was verified by confocal scanning laser ophthalmoscope and spectral domain-optical coherence tomography (SD-OCT). In group A, BCVA improved by 0.581 to 0.504 at 90 days and to 0.376 logMAR at 180 days (+32.20%) postoperatively. Furthermore, MY test increased by 11.44 dB to 12.59 dB at 180 days. The different cell types grafted behind the choroid were able to ensure constant GF secretion in the choroidal flow. Consequently, the results indicate that visual acuity (VA) in the grafted group can increase more than in the control group after six months.
Collapse
Affiliation(s)
| | - Enzo Maria Vingolo
- Department of Ophthalmology, A. Fiorini Hospital, Sapienza University of Rome
| | | | - Sergio Zaccaria Scalinci
- Glaucoma and Low Vision Study Center, Department of General Surgery and Organ Transplants, University of Bologna
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome;
| |
Collapse
|
13
|
Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8374647. [PMID: 29484106 PMCID: PMC5816845 DOI: 10.1155/2018/8374647] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/06/2017] [Indexed: 12/03/2022]
Abstract
Age-related macular degeneration (AMD) is a well-characterized and extensively studied disease. It is currently considered the leading cause of visual disability among patients over 60 years. The hallmark of early AMD is the formation of drusen, pigmentary changes at the macula, and mild to moderate vision loss. There are two forms of AMD: the “dry” and the “wet” form that is less frequent but is responsible for 90% of acute blindness due to AMD. Risk factors have been associated with AMD progression, and they are taking relevance to understand how AMD develops: (1) advanced age and the exposition to environmental factors inducing high levels of oxidative stress damaging the macula and (2) this damage, which causes inflammation inducing a vicious cycle, altogether causing central vision loss. There is neither a cure nor treatment to prevent AMD. However, there are some treatments available for the wet form of AMD. This article will review some molecular and cellular mechanisms associated with the onset of AMD focusing on feasible treatments for each related factor in the development of this pathology such as vascular endothelial growth factor, oxidative stress, failure of the clearance of proteins and organelles, and glial cell dysfunction in AMD.
Collapse
|
14
|
Du ZJ, Li P, Wang L. Magnetic nanoparticles conjugated with "RPE cell -MCP-1 antibody -VEGF antibody" compounds for the targeted therapy of age-related macular degeneration: a hypothesis. Int J Ophthalmol 2017; 10:812-814. [PMID: 28546942 DOI: 10.18240/ijo.2017.05.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/23/2017] [Indexed: 11/23/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly throughout the world. Treatment of AMD utilizing retinal pigment epithelium (RPE) transplantation represents a promising therapy. However, simplex RPE transplantation can only replace the diseased RPE cells, but has no abilities to stop the development of AMD. It has been indicated that oxidization triggers the development of AMD by inducing the dysfunction and degeneration of RPE cells, which results in the upregulation of local monocyte chemotactic protein-1 (MCP-1) expression. MCP-1 induces macrophage recruiment which triggers local inflammation. As a result, the expression of vascular endothelial growth factor (VEGF) is upregulated by MCP-1 mediated inflammation and results in the formation of choroidal neovascularization (CNV). We accordingly propose a targeted therapy of AMD by subretinal transplanting the compound of RPE cell, MCP-1 antibody, and VEGF antibody and using a magnetic system to guide RPE cell compounds conjugated with superparamagnetic iron oxide nanoparticles (SPIONs). Furthermore, SPION-labelled RPE cells can be tracked and detected in vivo by non-invasive magnetic resonance imaging (MRI). This novel RPE cell transplantation methodology seems very promising to provide a new therapeutic approach for the treatment of AMD.
Collapse
Affiliation(s)
- Zhao-Jiang Du
- Department of Ophthalmology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Peng Li
- Department of Ophthalmology, No.451 Hospital of PLA, Xi'an 710054, Shaanxi Province, China
| | - Li Wang
- Department of Optometry, Xi'an Medical University, Xi'an 710021, Shaanxi Province, China
| |
Collapse
|
15
|
Abstract
Basic experimental stem cell research has opened up the possibility of many diverse clinical applications; however, translation to clinical trials has been restricted to only a few diseases. To broaden this clinical scope, pluripotent stem cell derivatives provide a uniquely scalable source of functional differentiated cells that can potentially repair damaged or diseased tissues to treat a wide spectrum of diseases and injuries. However, gathering sound data on their distribution, longevity, function and mechanisms of action in host tissues is imperative to realizing their clinical benefit. The large-scale availability of treatments involving pluripotent stem cells remains some years away, because of the long and demanding regulatory pathway that is needed to ensure their safety.
Collapse
|
16
|
Chen K, Wang Y, Liang X, Zhang Y, Ng TK, Chan LLH. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats. Sci Rep 2016; 6:26793. [PMID: 27225415 PMCID: PMC4880896 DOI: 10.1038/srep26793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Yi Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Xiaohua Liang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihuai Zhang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WWY. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul Surf 2016; 14:121-34. [PMID: 26804815 DOI: 10.1016/j.jtos.2015.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs' unique ability to modulate inflammation, and both innate and adaptive immunity.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- Department of Ophthalmology, University of Cincinnati, Ohio, USA; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | | | | | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
18
|
Ilmarinen T, Hiidenmaa H, Kööbi P, Nymark S, Sorkio A, Wang JH, Stanzel BV, Thieltges F, Alajuuma P, Oksala O, Kataja M, Uusitalo H, Skottman H. Ultrathin Polyimide Membrane as Cell Carrier for Subretinal Transplantation of Human Embryonic Stem Cell Derived Retinal Pigment Epithelium. PLoS One 2015; 10:e0143669. [PMID: 26606532 PMCID: PMC4659637 DOI: 10.1371/journal.pone.0143669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat eyes were analyzed with electroretinography (ERG) and histology. After analyzing the surface and permeability properties of PI, subretinal PI membrane transplantations with and without hESC-RPE were performed in rabbits. The rabbits were followed for three months and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT), and histology. Animals were immunosuppressed with cyclosporine the entire follow-up time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT showed good placement of the PI. However, there was loss of pigmentation on the hESC-RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atrophy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal atrophy were observed around the membranes. The porous ultrathin PI membrane was well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation. However, the rejection of the transplanted cells seems to be a major problem and the given immunosuppression was insufficient for reduction of xenograft induced inflammation.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- BioMediTech, University of Tampere, Tampere, Finland
- * E-mail:
| | | | - Peeter Kööbi
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | - Soile Nymark
- Department of Electronics and Communications Engineering and BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Anni Sorkio
- BioMediTech, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | | | | | | | | | | | - Hannu Uusitalo
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | - Heli Skottman
- BioMediTech, University of Tampere, Tampere, Finland
| |
Collapse
|
19
|
Dang Y, Wu W, Xu Y, Mu Y, Xu K, Wu H, Zhu Y, Zhang C. Effects of low-level laser irradiation on proliferation and functional protein expression in human RPE cells. Lasers Med Sci 2015; 30:2295-302. [PMID: 26404781 DOI: 10.1007/s10103-015-1809-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022]
Abstract
Low-level laser irradiation (LLLI) modulates a set of biological effects in many cell types such as fibroblasts, keratinocytes, and stem cells. However, no study to date has reported the effects of LLLI on retinal pigment epithelia (RPE) cells. The aim of this study was to investigate whether LLLI could enhance the proliferation of RPE cells and increase the expression of RPE functional genes/proteins. Human ARPE-19 cells were seeded overnight and treated with 8 J/cm(2) of LLLI. Cell proliferation was measured by CCK8 assay and cell cycle distribution was evaluated by FACS. The transcription of cell cycle-specific genes and RPE functional genes was quantified by RT-PCR. Moreover, the expression of ZO-1 and CRALBP were evaluated by immunostaining. A dose of 8 J/cm(2) of LLLI significantly increased proliferation and promoted cell cycle progression while upregulating the transcription of CDK4 and CCND1 and decreasing the transcription of CDKN2A, CDKN2C, and CDKN1B in human ARPE-19 cells. Additionally, LLLI enhanced the expression of ZO-1 and CRALBP in human ARPE-19 cells. In conclusion, LLLI could enhance the proliferative ability of human ARPE-19 cells by modulating cyclin D1, CDK4, and a group of cyclin-dependent kinase inhibitors. It also could increase the expression of RPE-specific proteins. Thus, LLLI may be a potential approach for the treatment of RPE degenerative diseases.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, China.,Clinical Stem Cell Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Wentao Wu
- Clinical Stem Cell Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Yongsheng Xu
- Clinical Stem Cell Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China.,Clinical Lab of Tissue & Cell Research Center, Department of Biotech Treatment, Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Yalin Mu
- Department of Ophthalmology, Yellow-River Hospital, Henan University of Science and Technology, Sanmenxia, China
| | - Ke Xu
- Department of Ophthalmology, Yellow-River Hospital, Henan University of Science and Technology, Sanmenxia, China
| | - Haotian Wu
- Clinical Stem Cell Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China.,Beijing No.4 High School, Beijing, China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, China.
| | - Chun Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China.
| |
Collapse
|
20
|
Wong CW, Wong TY, Cheung CMG. Polypoidal Choroidal Vasculopathy in Asians. J Clin Med 2015; 4:782-821. [PMID: 26239448 PMCID: PMC4470199 DOI: 10.3390/jcm4050782] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/13/2015] [Indexed: 01/16/2023] Open
Abstract
Age related macular degeneration (AMD) in Asians has been suggested to differ from their Western counterparts in terms of epidemiology, pathogenesis, clinical presentation and treatment. In particular, polypoidal choroidal vasculopathy (PCV) appears to be the predominant subtype of exudative AMD in Asian populations, in contrast to choroidal neovascularization secondary to AMD (CNV-AMD) in Western populations. Epidemiological data on PCV has been largely limited to hospital-based studies and there are currently no data on the incidence of PCV. Similarities and differences in risk factor profile between PCV and CNV-AMD point to some shared pathogenic mechanisms but also differential underlying mechanisms leading to the development of each phenotype. Serum biomarkers such as CRP, homocysteine and matrix metalloproteinases suggest underlying inflammation, atherosclerosis and deranged extracellular matrix metabolism as possible pathogenic mechanisms. In addition, recent advances in genome sequencing have revealed differences in genetic determinants of each subtype. While the standard of care for CNV-AMD is anti-vascular endothelial growth factor (VEGF) therapy, photodynamic therapy (PDT) has been the mainstay of treatment for PCV, although long-term visual prognosis remains unsatisfactory. The optimal treatment for PCV requires further clarification, particularly with different types of anti-VEGF agents and possible benefits of reduced fluence PDT.
Collapse
Affiliation(s)
- Chee Wai Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, 168751 Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, National University of Singapore, 169857 Singapore, Singapore.
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, 168751 Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, National University of Singapore, 169857 Singapore, Singapore.
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, 168751 Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, National University of Singapore, 169857 Singapore, Singapore.
| |
Collapse
|