1
|
Jiang G, Zhou X, Hu Y, Tan X, Wang D, Yang L, Zhang Q, Liu S. The antipsychotic drug pimozide promotes apoptosis through the RAF/ERK pathway and enhances autophagy in breast cancer cells. Cancer Biol Ther 2024; 25:2302413. [PMID: 38356266 PMCID: PMC10878017 DOI: 10.1080/15384047.2024.2302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The antipsychotic drug pimozide has been demonstrated to inhibit cancer. However, the precise anti-cancer mechanism of pimozide remains unclear. The purpose of this study was to investigate the effects of pimozide on human MCF-7 and MDA-MB-231 breast cancer cell lines, and the potential involvement in the RAF/ERK signaling. The effects of pimozide on cells were examined by 4,5-dimethylthiazol-2-yl-3,5-diphenylformazan, wound healing, colony formation, transwell assays, and caspase activity assay. Flow cytometry and acridine orange and ethidium bromide staining were performed to assess changes in cells. Transmission electron microscopy and monodansylcadaverine staining were used to observe autophagosomes. The cyclic adenosine monophosphate was evaluated using the FRET system. Immunohistochemistry, immunofluorescence, RNA interference, and western blot investigated the expression of proteins. Mechanistically, we focus on the RAF1/ERK signaling. We detected pimozide was docked to RAF1 by Schrodinger software. Pimozide down-regulated the phosphorylation of RAF1, ERK 1/2, Bcl-2, and Bcl-xl, up-regulated Bax, and cleaved caspase-9 to induce apoptosis. Pimozide might promote autophagy by up-regulating cAMP. The enhancement of autophagy increased the conversion of LC3-I to LC3-II and down-regulated p62 expression. But mTOR signaling was not involved in promoting autophagy. The knockdown of RAF1 expression induced autophagy and apoptosis in breast cancer cells, consistent with the results of pimozide or sorafenib alone. Blocked autophagy by chloroquine resulted in the impairment of pimozide-induced apoptosis. These data showed that pimozide inhibits breast cancer by regulating the RAF/ERK signaling pathway and might activate cAMP-induced autophagy to promote apoptosis and it may be a potential drug for breast cancer treatment.
Collapse
Affiliation(s)
- Ge Jiang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Biology, Life Science and Technology College, Dalian University, Dalian, Liaoning, China
| | - Xingzhi Zhou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ye Hu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaoyu Tan
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Dalian University, Dalian, China
| | - Dan Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Lina Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Chutoe C, Inson I, Krobthong S, Phueakphud N, Khunluck T, Wongtrakoongate P, Charoenphandhu N, Lertsuwan K. Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells. PLoS One 2024; 19:e0312851. [PMID: 39527598 PMCID: PMC11554208 DOI: 10.1371/journal.pone.0312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought. The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival. Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells. The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways. Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.
Collapse
Affiliation(s)
- Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Bai Y, Deng X, Chen D, Han S, Lin Z, Li Z, Tong W, Li J, Wang T, Liu X, Liu Z, Cui Z, Zhang Y. Integrative analysis based on ATAC-seq and RNA-seq reveals a novel oncogene PRPF3 in hepatocellular carcinoma. Clin Epigenetics 2024; 16:154. [PMID: 39501301 PMCID: PMC11539654 DOI: 10.1186/s13148-024-01769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Assay of Transposase Accessible Chromatin Sequencing (ATAC-seq) is a high-throughput sequencing technique that detects open chromatin regions across the genome. These regions are critical in facilitating transcription factor binding and subsequent gene expression. Herein, we utilized ATAC-seq to identify key molecular targets regulating the development and progression of hepatocellular carcinoma (HCC) and elucidate the underlying mechanisms. METHODS We first compared chromatin accessibility profiles between HCC and normal tissues. Subsequently, RNA-seq data was employed to identify differentially expressed genes (DEGs). Integrating ATAC-seq and RNA-seq data allowed the identification of transcription factors and their putative target genes associated with differentially accessible regions (DARs). Finally, functional experiments were conducted to investigate the effects of the identified regulatory factors and corresponding targets on HCC cell proliferation and migration. RESULTS Enrichment analysis of DARs between HCC and adjacent normal tissues revealed distinct signaling pathways and regulatory factors. Upregulated DARs in HCC were enriched in genes related to the MAPK and FoxO signaling pathways and associated with transcription factor families like ETS and AP-1. Conversely, downregulated DARs were associated with the TGF-β, cAMP, and p53 signaling pathways and the CTCF family. Integration of the datasets revealed a positive correlation between specific DARs and DEGs. Notably, PRPF3 emerged as a gene associated with DARs in HCC, and functional assays demonstrated its ability to promote HCC cell proliferation and migration. To the best of our knowledge, this is the first report highlighting the oncogenic role of PRPF3 in HCC. Furthermore, ZNF93 expression positively correlated with PRPF3, and ChIP-seq data indicated its potential role as a transcription factor regulating PRPF3 by binding to its promoter region. CONCLUSION This study provides a comprehensive analysis of the epigenetic landscape in HCC, encompassing both chromatin accessibility and the transcriptome. Our findings reveal that ZNF93 promotes the proliferation and motility of HCC cells through transcriptional regulation of a novel oncogene, PRPF3.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xiyue Deng
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Shuangqing Han
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Zijie Lin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Zhongmin Li
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Jinming Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiangyu Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Abok JI, Garver WS, Edwards JS. Bioinformatic analysis of human ZPR1 gene pathogenic exome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582196. [PMID: 38464185 PMCID: PMC10925172 DOI: 10.1101/2024.02.27.582196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Advanced sequencing technologies enable rapid detection of sequence variants, aiming to uncover the molecular foundations of human genetic disorders. The challenge lies in interpreting the influence of new exome variants that lead to diverse phenotypes. Our study introduces a detailed, multi-tiered method for assessing the impact of novel variants, particularly focusing on the zinc finger protein 1 (ZPR1) gene. Herein, we employed a combination of variant effect predictors, protein stability analyses, and the American College of Medical Genetics and Association of Molecular Pathology (ACMG/AMP) guidelines. Our structural analysis pinpoints specific amino acid residues in the ZPR1 zinc finger domains that are sensitive to changes, distinguishing between benign and disease-causing coding variants using rigorous in silico tools. We examined 223 germline ZPR1 exome variants, uncovering significant ethnic disparities in the frequency of heterozygous harmful ZPR1 variants, ranging from 0.04% in the Ashkenazi Jewish population to 0.34% in African/African Americans. Additionally, the discovery of three homozygous carriers in European and South Asian groups suggests a higher occurrence of ZPR1 variants in these demographics, meriting further exploration. This research provides insights into the prevalence and implications of amino acid substitutions in the ZPR1 protein.
Collapse
Affiliation(s)
- Jeremiah I. Abok
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - William S. Garver
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jeremy S. Edwards
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
5
|
Sun G, Ye H, Liu H, Li T, Li J, Zhang X, Cheng Y, Wang K, Shi J, Dai L, Wang P. ZPR1 is an immunodiagnostic biomarker and promotes tumor progression in esophageal squamous cell carcinoma. Cancer Sci 2024; 115:70-82. [PMID: 37964506 PMCID: PMC10823283 DOI: 10.1111/cas.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
To evaluate the potential of zinc finger protein 1 (ZPR1) as a diagnostic biomarker and explore the underlying role for esophageal squamous cell carcinoma (ESCC). A human proteome microarray was customized to identify anti-ZPR1 autoantibody, and enzyme-linked immunosorbent assay (ELISA) was adopted to assess the diagnostic performance of anti-ZPR1 autoantibody in 294 patients with ESCC and 294 normal controls. The expression of ZPR1 protein was measured by immunohistochemistry. The effect of ZPR1 on the proliferation, migration, and invasion of ESCC cells was investigated through CCK-8, wound healing, and Transwell assays. The expression level of anti-ZPR1 autoantibody (fold change = 2.77) in ESCC patients was higher than that in normal controls. The receiver operating characteristic (ROC) analysis manifested anti-ZPR1 autoantibody achieved area under the ROC curve (AUC) of 0.726 and 0.734 to distinguish ESCC from normal controls with sensitivity of 50.0% and 42.3%, and specificity of 91.0% and 92.0% in the test group and validation group, respectively. The positive rate of ZPR1 protein was significantly higher in ESCC tissues (75.5%, 80/106) than paracancerous tissues (9.4%, 5/53). Compared with the human normal esophageal cell line, the expression level of ZPR1 mRNA and protein in ESCC lines (KYSE150, Eca109, and TE1) had an increased trend. The knockdown or overexpression of ZPR1 reduced and enhanced the proliferation, migration, and invasion of ESCC cell, respectively. ZPR1 was a potential immunodiagnostic biomarker for noninvasive detection and could be a promotional factor in tumor progression of ESCC.
Collapse
Affiliation(s)
- Guiying Sun
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Huijuan Liu
- Scientific Research Department, The First Affiliated Hospital of Henan University of CMHenan University of Chinese MedicineZhengzhouChina
| | - Tiandong Li
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Xiaoyue Zhang
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Yifan Cheng
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Li T, Chen Z, Wang Z, Lu J, Chen D. Combined signature of N7-methylguanosine regulators with their related genes and the tumor microenvironment: a prognostic and therapeutic biomarker for breast cancer. Front Immunol 2023; 14:1260195. [PMID: 37868988 PMCID: PMC10585266 DOI: 10.3389/fimmu.2023.1260195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Identifying predictive markers for breast cancer (BC) prognosis and immunotherapeutic responses remains challenging. Recent findings indicate that N7-methylguanosine (m7G) modification and the tumor microenvironment (TME) are critical for BC tumorigenesis and metastasis, suggesting that integrating m7G modifications and TME cell characteristics could improve the predictive accuracy for prognosis and immunotherapeutic responses. Methods We utilized bulk RNA-sequencing data from The Cancer Genome Atlas Breast Cancer Cohort and the GSE42568 and GSE146558 datasets to identify BC-specific m7G-modification regulators and associated genes. We used multiple m7G databases and RNA interference to validate the relationships between BC-specific m7G-modification regulators (METTL1 and WDR4) and related genes. Single-cell RNA-sequencing data from GSE176078 confirmed the association between m7G modifications and TME cells. We constructed an m7G-TME classifier, validated the results using an independent BC cohort (GSE20685; n = 327), investigated the clinical significance of BC-specific m7G-modifying regulators by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, and performed tissue-microarray assays on 192 BC samples. Results Immunohistochemistry and RT-qPCR results indicated that METTL1 and WDR4 overexpression in BC correlated with poor patient prognosis. Moreover, single-cell analysis revealed relationships between m7G modification and TME cells, indicating their potential as indicators of BC prognosis and treatment responses. The m7G-TME classifier enabled patient subgrouping and revealed significantly better survival and treatment responses in the m7Glow+TMEhigh group. Significant differences in tumor biological functions and immunophenotypes occurred among the different subgroups. Conclusions The m7G-TME classifier offers a promising tool for predicting prognosis and immunotherapeutic responses in BC, which could support personalized therapeutic strategies.
Collapse
Affiliation(s)
- Tingjun Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Zhishan Chen
- Department of Breast and Thyroid Surgery, Nan’an Hospital, Quanzhou, China
| | - Zhitang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Jingyu Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Debo Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
He L, Xie Y, Qiu Y, Zhang Y. Pan-Cancer Profiling and Digital Pathology Analysis Reveal Negative Prognostic Biomarker ZPR1 Associated with Immune Infiltration and Treatment Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1309-1325. [PMID: 37581094 PMCID: PMC10423584 DOI: 10.2147/jhc.s415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Purpose ZPR1 is a zinc finger-containing protein that plays a crucial role in neurodegenerative diseases, lipid metabolism disorders, and non-alcoholic fatty liver disease. However, the expression pattern, prognostic value, and treatment response of ZPR1 in pan-cancer and hepatocellular carcinoma (HCC) remain unclear. Patients and Methods Pan-cancer expression profiles and relevant clinical data were acquired from UCSC Xena platform. Pan-cancer expression, epigenetic profile, and clinical correlation analysis for ZPR1 were performed. We next explored the prognostic significance and potential biological functions of ZPR1 in HCC. Furthermore, the relationship between ZPR1 and immune infiltration and treatment response was investigated. Finally, quantitative immunohistochemistry (IHC) analysis was applied to assess the correlation of ZPR1 expression and immune microenvironment in HCC tissues using Qupath software. Results ZPR1 was differentially expressed in most tumor types and significantly up-regulated in HCC. ZPR1 showed hypo-methylated status in most tumors. Pan-cancer correlation analysis indicated that ZPR1 was closely associated with clinicopathological factors and TMB, MSI, and stemness index in HCC. High ZPR1 expression could be an independent risk factor for adverse prognosis in HCC. ZPR1 correlated with immune cell infiltration and therapeutic response. Finally, IHC results suggested that ZPR1 correlated with CD4, CD56, CD68, and PD-L1 expression and is a promising pathological diagnostic marker in HCC. Conclusion Immune infiltrate-associated ZPR1 could be considered a novel negative prognostic biomarker for therapeutic response in HCC.
Collapse
Affiliation(s)
- Lian He
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, People’s Republic of China
| | - Yusai Xie
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, Liaoning, 110016, People’s Republic of China
| | - Yusong Qiu
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, People’s Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, People’s Republic of China
| |
Collapse
|
8
|
Zhu L, Tu D, Li R, Li L, Zhang W, Jin W, Li T, Zhu H. The diagnostic significance of the ZNF gene family in pancreatic cancer: a bioinformatics and experimental study. Front Genet 2023; 14:1089023. [PMID: 37396042 PMCID: PMC10311482 DOI: 10.3389/fgene.2023.1089023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is among the most devastating of all cancers with a poor survival rate. Therefore, we established a zinc finger (ZNF) protein-based prognostic prediction model for PAAD patients. Methods: The RNA-seq data for PAAD were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Differentially expressed ZNF protein genes (DE-ZNFs) in PAAD and normal control tissues were screened using the "lemma" package in R. An optimal risk model and an independent prognostic value were established by univariate and multivariate Cox regression analyses. Survival analyses were performed to assess the prognostic ability of the model. Results: We constructed a ZNF family genes-related risk score model that is based on the 10 DE-ZNFs (ZNF185, PRKCI, RTP4, SERTAD2, DEF8, ZMAT1, SP110, U2AF1L4, CXXC1, and RMND5B). The risk score was found to be a significant independent prognostic factor for PAAD patients. Seven significantly differentially expressed immune cells were identified between the high- and low-risk patients. Then, based on the prognostic genes, we constructed a ceRNA regulatory network that includes 5 prognostic genes, 7 miRNAs and 35 lncRNAs. Expression analysis showed ZNF185, PRKCI and RTP4 were significantly upregulated, while ZMAT1 and CXXC1 were significantly downregulated in the PAAD samples in all TCGA - PAAD, GSE28735 and GSE15471 datasets. Moreover, the upregulation of RTP4, SERTAD2, and SP110 were verified by the cell experiments. Conclusion: We established and validated a novel, Zinc finger protein family - related prognostic risk model for patients with PAAD, that has the potential to inform patient management.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dong Tu
- Department of Cardiothoracic Surgery, No. 920 Hospital of the PLA Joint Logistics Support Force, Kunming, China
| | - Ruixue Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenxiang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tiehan Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Blockade of the orexin receptors in the ventral tegmental area could attenuate the stress-induced analgesia: A behavioral and molecular study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110639. [PMID: 36116673 DOI: 10.1016/j.pnpbp.2022.110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Exposure to stressful stimuli induces various physiological and behavioral responses, affects pain perception, and alters gene expression. Stress elicits an analgesic effect in laboratory animals, termed the "stress-induced analgesia" (SIA). Orexin neuropeptides, processed from pre-pro-orexin in the hypothalamus, release during stress and are known to be antinociceptive. The current study examined the modulatory role of the ventral tegmental area (VTA) orexinergic system in the restraint SIA and extracellular signal-regulated kinase (ERK) activation in the nucleus accumbens (NAc). Adult male Wistar rats were subjected to intra-VTA injection of orexin-1 and -2 receptor antagonists (SB334867 and TCS OX2 29; 1, 3, 10, and 30 nmol/0.3 μl, respectively) five min before a 3-h period of exposure to restraint stress (RS). Western blot analysis was also used to assess the levels of ERK and phosphorylated ERK (p-ERK) in the NAc tissues. RS exposure produced an analgesic response to the thermal pain model (Tail-flick test). RS-induced antinociception was inhibited by intra-VTA administration of SB334867 and TCS OX2 29. Moreover, in the molecular study, exposure to forced swim stress (FSS) and RS significantly enhanced the p-ERK/ERK ratio. Blockade of both orexin receptors diminished the p-ERK/ERK ratio, but this decrease was significant only in the FSS group of animals that received TCS OX2 29. Collectively, the present findings suggested the functional roles of intra-VTA orexin receptors and ERK signaling in the SIA.
Collapse
|
10
|
Ochoa SV, Casas Z, Albarracín SL, Sutachan JJ, Torres YP. Therapeutic potential of TRPM8 channels in cancer treatment. Front Pharmacol 2023; 14:1098448. [PMID: 37033630 PMCID: PMC10073478 DOI: 10.3389/fphar.2023.1098448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a multifactorial process associated with changes in signaling pathways leading to cell cycle variations and gene expression. The transient receptor potential melastatin 8 (TRPM8) channel is a non-selective cation channel expressed in neuronal and non-neuronal tissues, where it is involved in several processes, including thermosensation, differentiation, and migration. Cancer is a multifactorial process associated with changes in signaling pathways leading to variations in cell cycle and gene expression. Interestingly, it has been shown that TRPM8 channels also participate in physiological processes related to cancer, such as proliferation, survival, and invasion. For instance, TRPM8 channels have an important role in the diagnosis, prognosis, and treatment of prostate cancer. In addition, it has been reported that TRPM8 channels are involved in the progress of pancreatic, breast, bladder, colon, gastric, and skin cancers, glioblastoma, and neuroblastoma. In this review, we summarize the current knowledge on the role of TRPM8 channels in cancer progression. We also discuss the therapeutic potential of TRPM8 in carcinogenesis, which has been proposed as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sara V. Ochoa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| |
Collapse
|
11
|
Siraj AK, Parvathareddy SK, Siraj N, Al-Obaisi K, Aldughaither SM, AlManea HM, AlHussaini HF, Al-Dayel F, Al-Kuraya KS. Loss of ZNF677 expression is a predictive biomarker for lymph node metastasis in Middle Eastern Colorectal Cancer. Sci Rep 2021; 11:22346. [PMID: 34785764 PMCID: PMC8595636 DOI: 10.1038/s41598-021-01869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Zinc-finger proteins are transcription factors with a “finger-like” domain that are widely involved in many biological processes. The zinc-finger protein 677 (ZNF677) belongs to the zinc-finger protein family. Previous reports have highlighted the tumor suppressive role of ZNF677 in thyroid and lung cancer. However, its role in colorectal cancer (CRC) has not been explored. ZNF677 protein expression was analyzed by immunohistochemistry in a large cohort of 1158 CRC patients. ZNF677 loss of expression was more frequent in CRC tissues (45.3%, 525/1158), when compared to that of normal tissue (5.1%, 11/214) (p < 0.0001) and was associated with mucinous histology (p = 0.0311), advanced pathological stage (p < 0.0001) and lymph node (LN) metastasis (p = 0.0374). Further analysis showed ZNF677 loss to be significantly enriched in LN metastatic CRC compared to overall cohort (p = 0.0258). More importantly, multivariate logistic regression analysis showed that ZNF677 loss is an independent predictor of LN metastasis in CRC (Odds ratio = 1.41; 95% confidence interval 1.05–1.87; p = 0.0203).The gain- and loss-of-function studies in CRC cell lines demonstrated that loss of ZNF677 protein expression prominently increased cell proliferation, progression of epithelial-mesenchymal transition and conferred chemoresistance, whereas its overexpression reversed the effect. In conclusion, loss of ZNF677 protein expression is common in Middle Eastern CRC and contributes to the prediction of biological aggressiveness of CRC. Therefore, ZNF677 could not only serve as a marker in predicting clinical prognosis in patient with CRC but also as a potential biomarker for personalized targeted therapy.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Khadija Al-Obaisi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saud M Aldughaither
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hadeel M AlManea
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hussah F AlHussaini
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
12
|
Developing ZNF Gene Signatures Predicting Radiosensitivity of Patients with Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:9255494. [PMID: 34504527 PMCID: PMC8423582 DOI: 10.1155/2021/9255494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
Adjuvant radiotherapy is one of the main treatment methods for breast cancer, but its clinical benefit depends largely on the characteristics of the patient. This study aimed to explore the relationship between the expression of zinc finger (ZNF) gene family proteins and the radiosensitivity of breast cancer patients. Clinical and gene expression data on a total of 976 breast cancer samples were obtained from The Cancer Genome Atlas (TCGA) database. ZNF gene expression was dichotomized into groups with a higher or lower level than the median level of expression. Univariate and multivariate Cox regression analyses were used to evaluate the relationship between ZNF gene expression levels and radiosensitivity. The Molecular Taxonomy Data of the International Federation of Breast Cancer (METABRIC) database was used for validation. The results revealed that 4 ZNF genes were possible radiosensitivity markers. High expression of ZNF644 and low expression levels of the other 3 genes (ZNF341, ZNF541, and ZNF653) were related to the radiosensitivity of breast cancer. Hierarchical cluster, Cox, and CoxBoost analysis based on these 4 ZNF genes indicated that patients with a favorable 4-gene signature had better overall survival on radiotherapy. Thus, this 4-gene signature may have value for selecting those patients most likely to benefit from radiotherapy. ZNF gene clusters could act as radiosensitivity signatures for breast cancer patients and may be involved in determining the radiosensitivity of cancer.
Collapse
|
13
|
Gao B, Chen J, Han B, Zhang X, Hao J, Giuliano AE, Cui Y, Cui X. Identification of triptonide as a therapeutic agent for triple negative breast cancer treatment. Sci Rep 2021; 11:2408. [PMID: 33510281 PMCID: PMC7843598 DOI: 10.1038/s41598-021-82128-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a high rate of early recurrence and distant metastasis, frequent development of therapeutic resistance, and a poor prognosis. There is a lack of targeted therapies for this aggressive subtype of breast cancer. Identifying novel effective treatment modalities for TNBC remains an urgent and unmet clinical need. In this study, we investigated the anti-cancer effect of triptonide, a natural compound derived from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, in TNBC. We found that triptonide inhibits human TNBC cell growth in vitro and growth of TNBC xenograft mammary tumors. It induces apoptosis and suppresses stem-like properties as indicated by reduced mammosphere formation and aldehyde dehydrogenase activity in TNBC cells. We show that triptonide downregulates multiple cancer stem cell-associated genes but upregulates SNAI1 gene expression. In support of SNAI1 induction as a negative feedback response to triptonide treatment, in vitro-derived triptonide-resistant HCC1806 cells display a markedly higher expression of SNAI1 compared with parental cells. Mechanistically, the increase of SNAI1 expression is mediated by the activation of JNK signaling, but not by ERK and AKT, two well-established SNAI1 regulators. Furthermore, knockdown of SNAI1 in the triptonide-resistant HCC1806 cells increases sensitivity to triptonide and reduces mammosphere formation. These results indicate that triptonide holds promise as a novel anti-tumor agent for TNBC treatment. Our study also reveals a SNAI1-associated feedback mechanism which may lead to acquired resistance to triptonide.
Collapse
Affiliation(s)
- Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Jiongyu Chen
- Guangdong Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Xinfeng Zhang
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Yukun Cui
- Guangdong Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building 2065, Los Angeles, CA, 90048, USA.
| |
Collapse
|
14
|
Li X, Tian L, Zhang L, Xu B, Zhang Y, Li Q. Clinical Significance of ZNF711 in Human Breast Cancer. Onco Targets Ther 2020; 13:6593-6601. [PMID: 32753895 PMCID: PMC7351981 DOI: 10.2147/ott.s251702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the clinicopathologic and prognostic significance of the zinc-finger protein 711 (ZNF711) in breast cancer (BCa). Materials and Methods The relevance of ZNF711 in BCa was analyzed using bioinformatics. The expression of ZNF711 was detected by immunohistochemistry in paraffin blocks of BCa. To evaluate its clinical significance, the correlation between the expression of ZNF711 and BCa clinical indicators, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2), was analyzed. Finally, the Kaplan-Meier method was applied to explore the prognostic value of ZNF711. Results ZNF711 expression was decreased in BCa and was negatively correlated with ER expression (P < 0.05) and positively correlated with HER-2 expression (P < 0.01), but there was no significant correlation between ZNF711 and PR expression. ZNF711 expression was not correlated with age, tumor diameter, or lymph node metastasis; however, ZNF711 expression was correlated with staging in BCa. Survival analysis results showed that the ZNF711-positive group patients had a poorer prognosis compared with the ZNF711-negative group. Conclusion The expression of ZNF711 was deceased in BCa and closely related to ER and HER-2 expression. Therefore, ZNF711 could not only serve as a predictor of BCa with poor prognosis but also as a potential biomarker for targeted therapy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Liu Tian
- Psychiatry and Mental Health Center, Shenyang Mental Health Center, Shenyang, Liaoning 110168, People's Republic of China
| | - Lina Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Baojin Xu
- Departments of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| |
Collapse
|
15
|
He G, Zhu H, Yao Y, Chai H, Wang Y, Zhao W, Fu S, Wang Y. Cysteine-rich intestinal protein 1 silencing alleviates the migration and invasive capability enhancement induced by excessive zinc supplementation in colorectal cancer cells. Am J Transl Res 2019; 11:3578-3588. [PMID: 31312368 PMCID: PMC6614615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 06/10/2023]
Abstract
Cysteine-rich intestinal protein 1 (CRIP1) is overexpressed in colorectal cancer (CRC) tissues and functions as an oncogene in regulating the migration and invasion of CRC cells. However, the underlying mechanism is unclear. CRIP1 has a role in zinc absorption and functions as an intracellular zinc transport protein. Here, we aimed to focus on the function of zinc and its underlying mechanism in CRC and determine whether CRIP1 promotes invasion and CRC metastasis through excessive zinc-induced epithelial-mesenchymal transition (EMT) by affecting the phosphorylated glycogen synthase kinase (GSK)-3beta. The results showed that ZnSO4 (Zn2+) supplementation in medium increased the labile intracellular zinc content. Furthermore, excessive Zn2+ supplementation activated the GSK3/mTOR signaling pathway in both SW620 and LoVo cells, and excessive Zn2+ supplementation promoted migration, invasion, and EMT of SW620 and LoVo cells. This migration promotion was alleviated by the specific mTOR inhibitor rapamycin, indicating that the GSK3/mTOR signaling pathway was involved in this process. CRIP1 silencing increased the labile intracellular zinc content and inhibited EMT and GSK3/mTOR signaling pathway. CRIP1 silencing alleviated the zinc supplementation effects on migration, invasion, EMT, and GSK3/mTOR signaling pathway. In conclusion, excessive Zn2+ promotes migration and invasion capabilities of SW620 and LoVo cells through GSK3/mTOR signaling pathway-induced EMT.
Collapse
Affiliation(s)
- Guoyang He
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical UniversityGuangzhou 510000, Guangdong Province, China
| | - Huifang Zhu
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| | - Yakun Yao
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| | - Huanran Chai
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| | - Yongqiang Wang
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| | - Wenli Zhao
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| | - Suzhen Fu
- The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| | - Yongxia Wang
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, Henan Province, China
| |
Collapse
|
16
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
17
|
Zhu YM, Li Q, Gao XZ, Meng X, Sun LL, Shi Y, Lu ET, Zhang Y. C14orf159 suppresses gastric cancer cells' invasion and proliferation by inactivating ERK signaling. Cancer Manag Res 2019; 11:1717-1723. [PMID: 30863180 PMCID: PMC6388960 DOI: 10.2147/cmar.s176771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background C14orf159, a new protein, has been identified recently. But its expression in tissues and clinicopathologic correlation is still unknown. Patients and methods We carried out immunohistochemistry staining in 144 gastric cancer cases in this study. Then Western blot was used to detect the expression of protein. MTT and matrigel invasion assay were used to assess the biological effects. Results The immunohistochemical results indicated that the expression of C14orf159 in normal gastric mucosa close to cancer tissue was remarkably higher than that in stomach carcinoma samples (63.9% and 34.7%, respectively, P<0.001). Negative C14orf159 expression was dramatically related to high TNM stages (P=0.033) and positive lymph node metastasis (P=0.008). Once C14orf159 was overexpressed, the expression levels of phosphorylated ERK and its regulated downstream molecules, such as Snail, phosphorylated P90RSK and Cyclin D1, were decreased, while the expression level of E-cadherin was increased. Finally, the invasion and proliferation capacity of gastric cancer cells was inhibited. Conclusion In other words, loss of C14orf159 is associated with the progression of gastric cancer. The role of C14orf159 in repression of proliferation and invasion may be due to resuming E-cadherin and abolishing Snail and Cyclin D1 expression through inactivating ERK–P90RSK pathway.
Collapse
Affiliation(s)
- Yan-Mei Zhu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Xiao-Zhuo Gao
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Xiao Meng
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Li-Li Sun
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Yu Shi
- Department of Pathology, People's Hospital of Dawa District, Panjin, Liaoning 124200, P.R. China
| | - En-Tian Lu
- Department of Pathology, Central Hospital of Pulandian District, Dalian, Liaoning 116200, P.R. China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| |
Collapse
|