1
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Hansen AS, Skok JA. Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation. CELL GENOMICS 2025; 5:100813. [PMID: 40118069 PMCID: PMC12008812 DOI: 10.1016/j.xgen.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modeling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, but CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant-specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Anders S Hansen
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
2
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Hansen AS, Skok JA. Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575070. [PMID: 38370764 PMCID: PMC10871189 DOI: 10.1101/2024.01.11.575070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modelling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, however CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
Collapse
|
3
|
Wang Y, Zhang Y, Qi X. EP300 promotes tumor stemness via epigenetic activation of CRISP3 leading to lobaplatin resistance in triple-negative breast cancer. Hum Cell 2024; 37:1475-1488. [PMID: 38879857 DOI: 10.1007/s13577-024-01091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Lobaplatin shows antitumor activity against a wide range of tumors, including triple-negative breast cancer (TNBC), and has been linked to cancer stem cell pool. Here, we investigated the molecular mechanisms behind lobaplatin resistance and stemness in vitro and in vivo. Two chemoresistance-related GEO data sets (GSE70690 and GSE103115) were included to screen out relevant genes. Cysteine-rich secretory protein 3 (CRISP3) was found to be overexpressed in lobaplatin-resistant TNBC and related to poor diagnosis. CRISP3 expression was significantly correlated with tumor stemness markers in lobaplatin-resistant cells. E1A-associated protein p300 (EP300) regulated CRISP3 expression by affecting the H3K27ac modification of the CRISP3 promoter. In addition, knocking down EP300 curbed the malignant biological behavior of lobaplatin-resistant cells, which was antagonized by CRISP3 overexpression. Collectively, our results highlight the EP300/CRISP3 axis as a key driver of lobaplatin resistance in TNBC and suggest that therapeutic targeting of this axis may be an effective strategy for enhancing platinum sensitivity in TNBC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
4
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Yang J, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Cheng X, Hansen AS, Skok JA. Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its ability to act as a chromatin organizer. RESEARCH SQUARE 2024:rs.3.rs-4670379. [PMID: 39070636 PMCID: PMC11275995 DOI: 10.21203/rs.3.rs-4670379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anders S Hansen
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
5
|
Song Y, Lian S, Fan H, Ma C, Zheng L, Huang F, Huang S, Tang Y, Shi A, Shu L, Zhao L, Xu Y, Guo S, Liu Z, Zhang Z. Bmi1 facilitates the progression of cholangiocarcinoma by inhibiting Foxn2 expression dependent on a histone H2A ubiquitination manner. Cancer Lett 2024; 592:216921. [PMID: 38705565 DOI: 10.1016/j.canlet.2024.216921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Cholangiocarcinoma (CCA), an exceptionally aggressive malignancy originating from the epithelium of the bile duct, poses a formidable challenge in cancer research and clinical management. Currently, attention is focused on exploring the oncogenic role and prognostic implications associated with Bmi1 in the context of CCA. In our study, we assessed the correlation of Bmi1 and Foxn2 expression across all types of CCA and evaluated their prognostic significance. Our results demonstrated that Bmi1 exhibits significantly upregulated expression in CCA tissues, while Foxn2 expression shows an inverse pattern. Simultaneously, the high expression of Bmi1, coupled with the low expression of Foxn2, indicates an unfavorable prognosis. Through in vitro and in vivo experiments, we confirmed the crucial role of Foxn2 in the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of CCA. Mechanistically, Bmi1 promotes the ubiquitination of histone H2A (H2AUb), leading to chromatin opening attenuation and a decrease in Foxn2 expression, ultimately driving CCA progression. Additionally, we described the potential value of Bmi1 and H2AUb inhibitors in treating CCA through in vitro experiments and orthotopic models. This study is of significant importance in deepening our understanding of the interaction between Bmi1 and Foxn2 in CCA and has the potential to advance the development of precision therapies for CCA.
Collapse
Affiliation(s)
- Yan Song
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huikang Fan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Changlin Ma
- Department of Hepatobiliary Surgery, Jining First People's Hospital, Jining, Shandong, 272002, China
| | - Lijie Zheng
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sen Guo
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Wang H, Liang C, Lin J, Dong Y, Wang Y, Xia L. Hsa_circ_0001741 Suppresses Ovarian Cancer Cell Proliferations Through Adsorption of miR-188-5p and Promotion of FOXN2 Expression. Mol Biotechnol 2024; 66:1477-1483. [PMID: 37318741 DOI: 10.1007/s12033-023-00773-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Ovarian cancer (OC) is among several general malignant gynecological cancers associated with high mortality rates on a global scale. Earlier investigations have revealed a critical role of circular RNAs (circRNAs) in OC development, which is a new class of endogenous non-coding RNA (ncRNA) that reported to mediate progression of diverse tumor types. At present, the precise involvement of circRNAs and associated regulatory mechanisms in OC remain unknown. In this study, hsa_circ_0001741 expression patterns in OC cells and tissues were tested. The underlying regulatory pathways and targets were further explored with the aid of bioinformatics, luciferase reporter, 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 (CCK-8) analyses. Further investigation of the hsa_circ_0001741 effects on tumor growth in vivo revealed abnormal circRNA expression in OC. hsa_circ_0001741 expression reduced in OC cells and tissues, indicative of activity in OC progression. hsa_circ_0001741 upregulation resulted in OC proliferation inhibitions. The luciferase reporter outputs verified miR-188-5p and FOXN2 as hsa_circ_0001741 downstream targets. FOXN2 silencing or miR-188-5p upregulations reversed inhibitory effects regarding hsa_circ_0001741 on OC cell proliferation. Therefore our data suggested that hsa_circ_0001741 upregulation inhibited proliferation of OC through modulatory effects on miR-188-5p/FOXN2 signaling.
Collapse
Affiliation(s)
- Hong Wang
- Department of Obstetrics and Gynecology, The Xiang'an Affiliated Hospital of Xiamen University, No 2000, Xiang'an East Road, Xindian Town, Xiang'an District, 361102, Xiamen, Fujian Province, China.
| | - Caijuan Liang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Beihua University, Jilin, China
| | - Jing Lin
- Department of Obstetrics and Gynecology, The Xiang'an Affiliated Hospital of Xiamen University, No 2000, Xiang'an East Road, Xindian Town, Xiang'an District, 361102, Xiamen, Fujian Province, China
| | - Yanan Dong
- Department of Obstetrics and Gynecology, The Xiang'an Affiliated Hospital of Xiamen University, No 2000, Xiang'an East Road, Xindian Town, Xiang'an District, 361102, Xiamen, Fujian Province, China
| | - Yangyang Wang
- Department of Obstetrics and Gynecology, The Xiang'an Affiliated Hospital of Xiamen University, No 2000, Xiang'an East Road, Xindian Town, Xiang'an District, 361102, Xiamen, Fujian Province, China
| | - Lin Xia
- The pharmacy college of Xiamen university, Xiamen, China
| |
Collapse
|
7
|
Li L, Sun X, Zhang M, Zhang B, Yang Y, Wang S. FOXN2, identified as a novel biomarker in serum, modulates the transforming growth factor-beta signaling pathway through its interaction with partitioning defective 6 homolog alpha, contributing to the pathogenesis of gastric cancer. Growth Factors 2024; 42:62-73. [PMID: 38954805 DOI: 10.1080/08977194.2023.2297700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2023] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Dysregulated expression of Forkhead Box N2 (FOXN2) has been detected in various cancer types. However, the underlying mechanisms by which FOXN2 contributes to the onset and progression of gastric cancer (GC) remain largely unexplored. This study aimed to elucidate the potential role of FOXN2 within GC, its downstream molecular mechanisms, and its feasibility as a novel serum biomarker for GC. METHODS Tissue samples from GC patients and corresponding non-cancerous tissues were collected. Peripheral blood samples were obtained from GC patients and healthy controls. The expression of FOXN2 was determined using quantitative real-time PCR, western blotting, and immunohistochemistry. The expression of FOXN2 in GC cells was modulated by transfection with small interfering RNA (siRNA) or the pcDNA 3.1 expression vector. Cell proliferation was assessed using the Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine incorporation assays. The migratory and invasive capacities of cells were evaluated by Transwell assays, apoptosis rates were measured by flow cytometry, and the expression of proliferative, apoptotic, and epithelial-mesenchymal transition (EMT) markers were assessed by western blot analysis. RESULTS FOXN2 was found to be overexpressed in the serum, tissues, and cells of GC, correlating with distant metastasis and TNM staging. FOXN2 demonstrated diagnostic value in differentiating GC patients from healthy individuals, with higher levels of FOXN2 being indicative of poorer survival rates. Silencing FOXN2 in vitro inhibited the proliferation, invasion, migration, and EMT of GC cells, while promoting apoptosis. FOXN2 was shown to regulate the transforming growth factor-beta (TGFβ) receptor signaling pathway in GC cells via its interaction with Partitioning Defective 6 Homolog Alpha (PARD6A). CONCLUSION In summary, our data suggest that FOXN2 acts as an oncogenic factor in GC, modulating the TGFβ pathway by binding to PARD6A, thereby influencing gastric carcinogenesis. This study underscores the functional significance of FOXN2 as a potential serum biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Liang Li
- Department of Gastroenterology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - XueFeng Sun
- Department of Gastroenterology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - Mei Zhang
- Department of Gastroenterology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - BangShuo Zhang
- Department of Hematology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - Yi Yang
- Department of Hematology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - Sheng Wang
- Department of Rheumatology and Immunology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| |
Collapse
|
8
|
Chen H, Shu J, Maley CC, Liu L. A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers (Basel) 2023; 15:5156. [PMID: 37958330 PMCID: PMC10647215 DOI: 10.3390/cancers15215156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The mouse is a widely used model organism in cancer research. However, no computational methods exist to identify cancer driver genes in mice due to a lack of labeled training data. To address this knowledge gap, we adapted the GUST (Genes Under Selection in Tumors) model, originally trained on human exomes, to mouse exomes via transfer learning. The resulting tool, called GUST-mouse, can estimate long-term and short-term evolutionary selection in mouse tumors, and distinguish between oncogenes, tumor suppressor genes, and passenger genes using high-throughput sequencing data. We applied GUST-mouse to analyze 65 exomes of mouse primary breast cancer models and 17 exomes of mouse leukemia models. Comparing the predictions between cancer types and between human and mouse tumors revealed common and unique driver genes. The GUST-mouse method is available as an open-source R package on github.
Collapse
Affiliation(s)
- Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Carlo C. Maley
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
9
|
Song J, Li L, Fang Y, Lin Y, Wu L, Wan W, Wei G, Hua F, Ying J. FOXN Transcription Factors: Regulation and Significant Role in Cancer. Mol Cancer Ther 2023; 22:1028-1039. [PMID: 37566097 DOI: 10.1158/1535-7163.mct-23-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
A growing number of studies have demonstrated that cancer development is closely linked to abnormal gene expression, including alterations in the transcriptional activity of transcription factors. The Forkhead box class N (FOXN) proteins FOXN1-6 form a highly conserved class of transcription factors, which have been shown in recent years to be involved in the regulation of malignant progression in a variety of cancers. FOXNs mediate cell proliferation, cell-cycle progression, cell differentiation, metabolic homeostasis, embryonic development, DNA damage repair, tumor angiogenesis, and other critical biological processes. Therefore, transcriptional dysregulation of FOXNs can directly affect cellular physiology and promote cancer development. Numerous studies have demonstrated that the transcriptional activity of FOXNs is regulated by protein-protein interactions, microRNAs (miRNA), and posttranslational modifications (PTM). However, the mechanisms underlying the molecular regulation of FOXNs in cancer development are unclear. Here, we reviewed the molecular regulatory mechanisms of FOXNs expression and activity, their role in the malignant progression of tumors, and their value for clinical applications in cancer therapy. This review may help design experimental studies involving FOXN transcription factors, and enhance their therapeutic potential as antitumor targets.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Longshan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Luojia Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
10
|
Peng J, Yang KY, Li H, Zheng SS, Pan XY. Protein Z modulates the metastasis of lung adenocarcinoma cells. Open Life Sci 2023; 18:20220667. [PMID: 37528887 PMCID: PMC10389673 DOI: 10.1515/biol-2022-0667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Protein Z (PZ), a vitamin-K-dependent anticoagulant glycoprotein, is reported to be highly expressed in various malignant tissues and correlated with a poor prognosis in patients with lung cancer. This study aimed to investigate the pathological activity of PZ on lung cancer cell migration, invasion, and metastasis. PZ was assessed by Western blot in three non-small-cell lung cancer cell lines (A549, H1299, and H1975). Meanwhile,western blot was used to detect the expression of EMT pathway-related proteins (Slug, Vimentin, and N-cadherin) in the A549 cells knocked down with siRNA. The cellular proliferation, migration, and invasion were detected by Cell Counting Kit (CCK)-8, wound healing, and Transwell assays in the A549 cells. The results showed that PZ expression was higher in A549, H1299, and H1975 cells, according to Western blot. CCK-8, wound healing, and Transwell assays showed that knockdown of PZ significantly decreased cellular proliferation, migration, and invasion, as well as the protein levels of Slug, Vimentin, and N-cadherin in the A549 cells. In conclusion, the pro-metastasis activity of PZ may modulate the epithelial-mesenchymal transition pathway in lung cancer A549 cells.
Collapse
Affiliation(s)
- Jin Peng
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Kai-Ying Yang
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Huan Li
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Shan-Shan Zheng
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Xue-Yi Pan
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| |
Collapse
|
11
|
Wu YH, Yu B, Zhou JM, Shen XH, Chen WX, Ai X, Leng C, Liang BY, Shao YJ. MicroRNA-188-5p inhibits hepatocellular carcinoma proliferation and migration by targeting forkhead box N2. BMC Cancer 2023; 23:511. [PMID: 37277714 DOI: 10.1186/s12885-023-10901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND This study aimed to identify the biological functions, expression modes, and possible mechanisms underlying the relationship between metastatic human hepatocellular carcinoma (HCC) and MicroRNA-188-5p (miR-188) dysregulation using cell lines. METHODS A decrease in miR-188 was detected in low and high metastatic HCC cells compared to that in normal hepatic cells and non-invasive cell lines. Gain- and loss-of-function experiments were performed in vitro to investigate the role of miR-188 in cancer cell (Hep3B, HepG2, HLF, and LM3) proliferation and migration. RESULTS miR-188 mimic transfection inhibited the proliferation of metastatic HLF and LM3 cells but not non-invasive HepG2 and Hep3B cells; nonetheless, miR-188 suppression promoted the growth of HLF and LM3 cells. miR-188 upregulation inhibited the migratory rate and invasive capacity of HLF and LM3, rather than HepG2 and Hep3B cells, whereas transfection of a miR-188 inhibitor in HLF and LM3 cells had the opposite effects. Dual-luciferase reporter assays and bioinformatics prediction confirmed that miR-188 could directly target forkhead box N2 (FOXN2) in HLF and LM3 cells. Transfection of miR-188 mimics reduced FOXN2 levels, whereas miR-188 inhibition resulted in the opposite result, in HLF and LM3 cells. Overexpression of FOXN2 in HLF and LM3 cells abrogated miR-188 mimic-induced downregulation of proliferation, migration, and invasion. In addition, we found that miR-188 upregulation impaired tumor growth in vivo. CONCLUSIONS In summary, this study showed thatmiR-188 inhibits the proliferation and migration of metastatic HCC cells by targeting FOXN2.
Collapse
Affiliation(s)
- Yan-Hui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Bin Yu
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiang-Min Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xue-Han Shen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wei-Xun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Bin-Yong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Ya-Jie Shao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Hu W, Li M, Wang Y, Zhong C, Si X, Shi X, Wang Z. Comprehensive bioinformatics analysis reveals the significance of forkhead box family members in pancreatic adenocarcinoma. Aging (Albany NY) 2023; 15:92-107. [PMID: 36622275 PMCID: PMC9876641 DOI: 10.18632/aging.204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Forkhead box proteins (FOXs) play important roles in multiple biological processes; while little is known regarding the role of FOX members in pancreatic adenocarcinoma (PAAD). This study aimed to comprehensively investigate the function of FOX family members in PAAD. METHODS Expression and prognostic value of FOXs were analyzed by R language and GEPIA. Genetic alteration and promoter methylation level were analyzed using CBioPortal and UALCAN. Protein-protein interactions and gene functions were analyzed using STRING and DAVID. TIMER and SENESCopedia were utilized to analyze the correlation of FOXs with immune cell infiltration or tumor senescence. Protein levels of FOXs were detected by immunohistochemistry. RESULTS Expression of 15 of 50 FOXs were significantly elevated in PAAD. Among these 15 differentially expressed FOXs (DE-FOXs), 4 were significantly associated with the clinical cancer stage and 4 were negatively associated with overall survival. Functions of DE-FOXs were related to epithelial tube morphogenesis, nuclear chromatin, and DNA-binding. Promoter methylation and genomic alterations were not major causes of FOX dysregulation. Most DE-FOX was correlated with diverse immune infiltration cells. Seven of the DE-FOXs were positively related to tumor senescence. The protein levels of FOXM1, FOXP1, and FOXN3 were negatively correlated with OS in the collected PAAD patients. CONCLUSIONS FOXM1, FOXP1, and FOXN3 have prognostic value. Seven FOXs were related senescence, whereas most DE-FOXs were related to immune infiltration in PAAD. Our findings are instructive for future research on FOX family and provide novel insights into the selection of FOXs with potential prognostic or therapeutic target value.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| | - Mingxu Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| | - Yan Wang
- Department of Pathology, The Second People’s Hospital of Lianyungang, Lianyungang 222001, Jiangsu, P.R. China
| | - Chengcheng Zhong
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, P.R. China
| | - Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| |
Collapse
|
13
|
Downregulation of hsa-miR-135b-5p Inhibits Cell Proliferation, Migration, and Invasion in Colon Adenocarcinoma. Genet Res (Camb) 2022; 2022:2907554. [PMID: 36407085 PMCID: PMC9640266 DOI: 10.1155/2022/2907554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/08/2022] [Indexed: 01/11/2023] Open
Abstract
Colon cancer is the most common malignant tumor of the gastrointestinal tract, and approximately 80%-90% of colon cancers are colon adenocarcinomas (COADs). This study aimed to screen key microRNAs (miRNAs) associated with COAD. Differentially expressed (DE) miRNAs were screened between COAD and adjacent cancer samples based on the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas obtained from datasets. The miRNAs of interest were validated using quantitative real-time polymerase chain reaction. Moreover, the effects of hsa-miR-135b-5p on the biological behavior of COAD cells were observed. To obtain the target genes of hsa-miR-135b-5p, transcriptome sequencing of the SW480 cells was performed, followed by protein-protein interaction (PPI) network and hsa-miR-135b-5p-target gene regulatory network construction and prognostic analysis. Downregulation of hsa-miR-135b-5p significantly inhibited SW480 cell proliferation, migration, and invasion and significantly facilitated apoptosis (P < 0.05). A total of 3384 DEmRNAs were screened, and enrichment analysis showed that the upregulated mRNAs were enriched in 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 326 Gene Ontology Biological Processes (GO-BPs) while the downregulated mRNAs were enriched in 20 KEGG pathways and 276 GO-BPs. A PPI network was then constructed, and H2BC14, H2BC3, and H4C11 had a higher degree. In addition, a total of 352 hsa-miR-135b-5p-gene regulatory relationships were identified. Prognostic analysis showed that FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B had prognostic significance (P < 0.05). In addition, the validation analysis results showed that FOXN2, NSA2, and DESI1 were significantly expressed between the miR-135b-5p-inhibitor and negative control groups (P < 0.05). Therefore, downregulation of hsa-miR-135b-5p inhibits cell proliferation, migration, and invasion in COAD, and carcinogenesis may function by targeting FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B.
Collapse
|
14
|
Xu B, Peng Z, An Y, Yan G, Yao X, Guan L, Sun M. Identification of Energy Metabolism-Related Gene Signatures From scRNA-Seq Data to Predict the Prognosis of Liver Cancer Patients. Front Cell Dev Biol 2022; 10:858336. [PMID: 35602603 PMCID: PMC9114438 DOI: 10.3389/fcell.2022.858336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The increasingly common usage of single-cell sequencing in cancer research enables analysis of tumor development mechanisms from a wider range of perspectives. Metabolic disorders are closely associated with liver cancer development. In recent years, liver cancer has been evaluated from different perspectives and classified into different subtypes to improve targeted treatment strategies. Here, we performed an analysis of liver cancer from the perspective of energy metabolism based on single-cell sequencing data. Single-cell and bulk sequencing data of liver cancer patients were obtained from GEO and TCGA/ICGC databases, respectively. Using the Seurat R package and protocols such as consensus clustering analysis, genes associated with energy metabolism in liver cancer were identified and validated. An energy metabolism-related score (EM score) was established based on five identified genes. Finally, the sensitivity of patients in different scoring groups to different chemotherapeutic agents and immune checkpoint inhibitors was analyzed. Tumor cells from liver cancer patients were found to divide into nine clusters, with cluster 4 having the highest energy metabolism score. Based on the marker genes of this cluster and TCGA database data, the five most stable key genes (ADH4, AKR1B10, CEBPZOS, ENO1, and FOXN2) were identified as energy metabolism-related genes in liver cancer. In addition, drug sensitivity analysis showed that patients in the low EM score group were more sensitive to immune checkpoint inhibitors and chemotherapeutic agents AICAR, metformin, and methotrexate.
Collapse
Affiliation(s)
- Boyang Xu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue An
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Yao
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Guan, ; Mingjun Sun,
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Guan, ; Mingjun Sun,
| |
Collapse
|
15
|
Jeong S, Kim SA, Ahn SG. HOXC6-Mediated miR-188-5p Expression Induces Cell Migration through the Inhibition of the Tumor Suppressor FOXN2. Int J Mol Sci 2021; 23:ijms23010009. [PMID: 35008435 PMCID: PMC8744690 DOI: 10.3390/ijms23010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Homeobox C6 (HOXC6) is a transcription factor that plays a role in the malignant progression of various cancers. However, the roles of HOXC6 and its regulatory mechanism remain unclear. In this study, we used microRNA (miRNA) regulatory networks to identify key regulatory interactions responsible for HOXC6-mediated cancer progression. In microarray profiling of miRNAs, the levels of miRNAs such as hsa-miR-188-5p, hsa-miR-8063, and hsa-miR-8064 were significantly increased in HOXC6-overexpressing cells. Higher positive expression rates of HOXC6 and miR-188-5p were observed in malignant cancer. We also found that HOXC6 significantly upregulated miR-188-5p expression. The underlying function of HOXC6-mediated miR-188-5p expression was predicted through TargetScan and the MiRNA Database. Overexpression of mir-188-5p inhibited the expression of forkhead box N2 (FOXN2), a tumor suppressor gene. Furthermore, in the luciferase assay, miR-188-5p bound to the 3'-UTR of FOXN2 and was mainly responsible for the dysregulation of FOXN2 expression. Silencing FOXN2 induced cell migration, and the effect of FOXN2 silencing was enhanced when the HOXC6/miR-188-5p axis was induced. These results suggest that HOXC6/miR-188-5p may induce malignant progression in cancer by inhibiting the activation of the FOXN2 signaling pathway.
Collapse
Affiliation(s)
- Seho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Soo-A Kim
- Department of Biochemistry, School of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
- Correspondence: ; Tel.: +82-62-230-6898
| |
Collapse
|
16
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
17
|
Onodera Y, Takagi K, Neoi Y, Sato A, Yamaguchi M, Miki Y, Ebata A, Miyashita M, Sasano H, Suzuki T. Forkhead Box I1 in Breast Carcinoma as a Potent Prognostic Factor. Acta Histochem Cytochem 2021; 54:123-130. [PMID: 34511651 PMCID: PMC8424250 DOI: 10.1267/ahc.21-00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Forkhead box (FOX) proteins are family of transcriptional factors and regulate cell growth and differentiation as well as embryogenesis and longevity. Previous studies have demonstrated that several FOX members regulate growth or metastasis of breast carcinoma, but clinical significance of total FOX members remains unclear. We first examined associations between expression of 40 FOX genes and TNM status of 19 breast carcinoma using microarray data. Subsequently, we immunolocalized FOXI1 in 140 breast carcinomas and evaluated its clinicopathological significance. In the microarray analysis, we newly identified that gene expression of FOXI1 was most pronouncedly linked to metastasis of the breast carcinoma among the FOX members examined. However, clinicopathological significance of FOXI1 has not been examined in the breast carcinoma. FOXI1 immunoreactivity was positive in 44 out of 140 (31%) of breast carcinomas, and it was significantly associated with stage, lymph node metastasis and distant metastasis. The FOXI1 status was significantly associated with worse prognosis of the breast cancer patients, and it turned out to be an independent prognostic factor for both distant disease-free survival and breast cancer-specific survival. These findings suggest that FOXI1 plays important roles in the metastasis of breast carcinoma and immunohistochemical FOXI1 status is a potent prognostic factor.
Collapse
Affiliation(s)
- Yoshiaki Onodera
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Yoshimi Neoi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Mio Yamaguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| |
Collapse
|
18
|
Ye H, Duan M. FOXN4 Inhibits Breast Cancer Progression By Direct Activation Of P53. Onco Targets Ther 2020; 13:71-81. [PMID: 32021256 PMCID: PMC6954834 DOI: 10.2147/ott.s206775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 11/24/2022] Open
Abstract
Background Fork head domain-containing gene family (Fox) transcription factors, consisting of over 20 members, are involved in the progression of certain types of tumor. However, whether FOXN4 is involved in carcinogenesis and tumor progression is still unclear. Purpose In this study, we investigated the clinicopathological significance and the underlying mechanism of FOXN4 in breast cancer. Methods and results We examined the lower expression of FOXN4 in breast cancer tissues and cancer cell lines. The expression of FOXN4 is negatively correlated with tumor size and lymph node metastasis. Using CCK-8 assay, colony formation assay, wound healing assay, and Transwell assay, we revealed that FOXN4 notably decreased breast cancer cell proliferation, epithelial-mesenchymal transition and invasion in vitro. In addition, quantitative chromatin immunoprecipitation and luciferase assays determined that FOXN4 was able to directly bind with the promoter of P53. RT-qPCR and Western blotting analysis showed that FOXN4 could directly activate P53 expression. Functionally, P53 knockdown rescued the tumor inhibition effects of FOXN4 in breast cancer cells. Conclusion The present study provides new insights into the role of FOXN4 in breast cancer progression and suggests FOXN4 might represent a potential therapeutic target in breast cancer by modulating P53.
Collapse
Affiliation(s)
- Hui Ye
- Department of Galactophore, Linyi Central Hospital of Shandong, Linyi, People's Republic of China
| | - Meiling Duan
- Department of Respiratory One, Linyi Central Hospital of Shandong, Linyi, People's Republic of China
| |
Collapse
|
19
|
Wang X, Su D, Qin Z, Chen Z. Identification of FOXN4 as a tumor suppressor of breast carcinogenesis via the activation of TP53 and deactivation of Notch signaling. Gene 2019; 722:144057. [PMID: 31430519 DOI: 10.1016/j.gene.2019.144057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fork head domain-containing transcription factor family (FOX), is comprised of >20 members. Members of FOX family have been implicated in a wide range of physiological and/or diseased conditions. Many of FOX members have been shown to be involved in tumorigenesis and progression. The potential roles in carcinogenesis of FOXN4, a member as one of the vast FOX family, remains relatively unknown. METHOD Here, we explored the potential involvement of FOXN4 in breast cancer. RESULTS First, observed that a higher FOXN4 was identified in the normal adjacent breast tissue as compared to that in the breast cancer samples; an increased FOXN4 level was associated with a better prognosis in patients with breast cancer. In addition, ectopically expression of FOXN4 led to the decreased cell proliferation, reduced colony formation and metastatic abilities (EMT, migration and invasion) in breast cancer cell lines. Furthermore, we showed the direct interaction between FOXN4 and TP53 and FOXN4 binding led to the increased activity of TP53. Silencing FOXN4 led to reduced TP53 and increased expression of Dll4, Notch and survivin, providing a link between FOXN4 and Notch signaling. Finally, we used patient-derived xenograft mouse model to demonstrate the tumor inhibitory effects of Notch-inhibitor, PF-3084014. We found that PF-3084014 treatment led to a significantly smaller tumor burden and higher survival ratio in patient-derived xenograft mice as compared to the vehicle. This tumor suppressive effect was accompanied by the increased expression of TP53, FOXN4 and decreased Dll4 and Notch. CONCLUSION Collectively, our data strongly suggested the tumor suppressive roles of FOXN4 in breast tumorigenesis via the activation of TP53 while suppressing Notch signaling. Future studies are warranted to explore the clinical application of PF-3084104 (Notch inhibitor) for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Dan Su
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Zhiquan Qin
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Zheling Chen
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|