1
|
Zhou Y, Tang Y, Huang F, Wang Z, Wen Z, Fang Q, Wang C. The miR-1305/KLF5 negative regulatory loop affects pancreatic cancer cell proliferation and apoptosis. Hum Cell 2025; 38:51. [PMID: 39921786 DOI: 10.1007/s13577-025-01173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/05/2025] [Indexed: 02/10/2025]
Abstract
Pancreatic cancer (PC) is characterized by a high relapse rate and unfavorable prognosis. Currently, the optimal treatment for PC is complete resection followed by adjuvant systemic chemotherapy. Nevertheless, tumor cell repopulation and subsequent tumor relapse and metastasis after chemotherapy result in a poor prognosis. Therefore, it is of great value to explore the potential molecular mechanisms underlying PC for developing novel treatment strategies. Herein, we aimed to investigate the potential regulatory mechanism of miR-1305 upon aerobic proliferation, metastasis, and apoptosis in PC. miR-1305 was downregulated in PC tissues and cell lines. miR-1305 overexpression prominently inhibited PC cell proliferation and metastasis promoted cell apoptosis in vitro, and alleviated PC formation in vivo. As predicted, KLF5 could directly bind to miR-1305. Silencing of KLF5 or KLF5 inhibitor (ML264) suppressed PC cell viability and cell invasion, and enhanced cell apoptosis. KLF5 restrained miR-1305 transcription and expression by binding to its promoter region. miR-1305 exerted a suppressive effect on PC cell proliferation and apoptosis via regulation of the KLF5-ERBB2 axis; KLF5 gene is a transcriptional regulator of miR-1305, promising to be a new target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Yufu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Yulin Tang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Feizhou Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhichao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhengbin Wen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Qi Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Changfa Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
2
|
Bhattarai S, Sugita BM, Nunes-Souza E, Fonseca AS, Chandrashekar DS, Bhargava M, Cavalli LR, Aneja R. Dysregulated miRNA Expression and Androgen Receptor Loss in Racially Distinct Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13679. [PMID: 39769441 PMCID: PMC11679545 DOI: 10.3390/ijms252413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Androgen receptor (AR)-negative triple-negative breast cancer (TNBC), often termed quadruple-negative breast cancer (QNBC), disproportionately impacts women of African descent, leading to poorer overall survival (OS). MiRNAs regulate the expression of gene drivers involved in critical signaling pathways in TNBC, such as the AR gene, and their expression varies across races and breast cancer subtypes. This study investigates whether differentially expressed miRNAs influence AR transcription, potentially contributing to the observed disparities between African American (AA) and European American (EA) QNBC patients. Race-annotated TNBC samples (n = 129) were analyzed for AR expression status and revealed the prevalence of QNBC in AA patients compared to EA (76.6% vs. 57.7%) and a significant association of AR loss with poor survival among AAs. The Cancer Genome Atlas (TCGA) RNA-seq data showed that AAs with TNBC (n = 32) had lower AR mRNA levels than EAs (n = 67). Among TCGA patients in the AR-low group, AAs had significantly poorer OS than EAs. In our cohort, 46 miRNAs exhibited differential expression between AAs and EAs with QNBC. Ten of these miRNAs (miR-1185-5p, miR-1305, miR-3161, miR-3690, miR-494-3p, miR-509-3-5p, miR-619-3p, miR-628-3p, miR-873-5p, and miR-877-5p) were predicted to target the AR gene/signaling. The loss of AR expression is linked to poorer prognoses in AA women. The understanding of the specific miRNAs involved and their regulatory mechanisms on AR expression could provide valuable insights into why AA women are more prone to QNBC.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Darshan Shimoga Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Mahak Bhargava
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Zhao X, Xing X, Wu Y. CircSFMBT2 Plays an Oncogenic Role in Lung Adenocarcinoma Depending on the miR-1305/SALL4 Axis. Biochem Genet 2024; 62:3485-3503. [PMID: 38127171 DOI: 10.1007/s10528-023-10611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Circular RNAs (circRNAs) exhibit significant functions in diverse malignant tumors, including lung adenocarcinoma (LUAD). In this study, we aimed to elucidate the role of circRNA scm like with four mbt domains 2 (circSFMBT2) in LUAD. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay was performed for quantification of circSFMBT2, microRNA-1305 (miR-1305), spalt like transcription factor 4 (SALL4), proliferating Cell Nuclear Antigen (PCNA) or Ki-67. 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay and flow cytometry analysis were applied to analyze cell proliferation, metastasis and apoptosis, respectively. Mouse xenograft model was established to explore the function of circSFMBT2. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to estimate the relationship between miR-1305 and circSFMBT2 or SALL4. CircSFMBT2 was upregulated in LUAD and related to advanced TNM stage and poor prognosis. CircSFMBT2 knockdown suppressed cell proliferation, metastasis, glycolysis and induced apoptosis in LUAD cells in vitro as well as tumor formation in vivo. CircSFMBT2 directly targeted miR-1305, and miR-1305 inhibition reversed circSFMBT2 knockdown-mediated inhibitory effects on LUAD malignant behaviors. SALL4 was the target gene of miR-1305. MiR-1305 overexpression repressed the malignant phenotypes of LUAD cells, while SALL4 enhancement abated the effects. CircSFMBT2 aggravated the progression of LUAD by the miR-1305/SALL4 axis, which might provide a diagnostic and prognostic marker for LUAD.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Hematology and Breast Medicine, Cancer Hospital of China Medical University, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China
| | - Xiaojing Xing
- Department of Hematology and Breast Medicine, Cancer Hospital of China Medical University, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China
| | - Yongkai Wu
- Department of Hematology and Breast Medicine, Cancer Hospital of China Medical University, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China.
| |
Collapse
|
4
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Gołąbek K, Hudy D, Gaździcka J, Miśkiewicz-Orczyk K, Nowak-Chmura M, Asman M, Komosińska-Vassev K, Ścierski W, Golusiński W, Misiołek M, Strzelczyk JK. The Analysis of Selected miRNAs and Target MDM2 Gene Expression in Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:3053. [PMID: 38002053 PMCID: PMC10668942 DOI: 10.3390/biomedicines11113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MiRNAs could play an important role in tumorigenesis and progression. The oncoprotein MDM2 (murine double minute 2) was identified as a negative regulator of the tumour suppressor p53. This study aims to analyse the expression of the MDM2 target miRNA candidates (miR-3613-3p, miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous cell carcinoma tumour and margin samples and their association with the selected socio-demographic and clinicopathological characteristics. The study group consisted of 50 patients. The miRNAs and MDM2 gene expression levels were assessed by qPCR. The expression analysis of the miRNAs showed the expression of only one of them, i.e., miR-3613-3p. We found no statistically significant differences in the miR-3613-3p expression in tumour samples compared to the margin samples. When analysing the effect of smoking on miR-3613-3p expression, we demonstrated a statistically significant difference between smokers and non-smokers. In addition, we showed an association between the miR-3613-3p expression level and some clinical parameters in tumour samples (T, N and G). Our study demonstrates that miR-3613-3p overexpression is involved in the tumour progression of OSCC. This indicates that miR-3613-3p possesses potential prognostic values.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie 3 St., 31-054 Kraków, Poland
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności St., 41-200 Sosnowiec, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
6
|
Le MT, Nguyen HT, Nguyen XH, Do XH, Mai BT, Ngoc Nguyen HT, Trang Than UT, Nguyen TH. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023; 9:e22080. [PMID: 38058618 PMCID: PMC10696070 DOI: 10.1016/j.heliyon.2023.e22080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression. Subsequently, cell behaviors are altered, which leads to the death and the depletion of cancer cells. It has been reported that miRNAs possess the capacity to regulate multiple genes that are involved in various signaling pathways, including the phosphoinositide 3-kinase, receptor tyrosine kinase/rat sarcoma virus/mitogen-activated protein kinase, wingless/integrated, retinoblastoma, p53, transforming growth factor β, and nuclear factor-kappa B pathways. Dysregulation of these signaling pathways in NSCLC results in abnormal cell proliferation, tissue invasion, and drug resistance while inhibiting apoptosis. Thus, understanding the roles of miRNAs in regulating these signaling pathways may enable the development of novel NSCLC treatment therapies. However, a comprehensive review of potential miRNAs in NSCLC treatment has been lacking. Therefore, this review aims to fill the gap by summarizing the up-to-date information on miRNAs regarding their targets, impact on cancer-associated pathways, and prospective outcomes in treating NSCLC. We also discuss current technologies for delivering miRNAs to the target cells, including virus-based, non-viral, and emerging extracellular vesicle-based delivery systems. This knowledge will support future studies to develop an innovative miRNA-based therapy and select a suitable carrier to treat NSCLC effectively.
Collapse
Affiliation(s)
- Mai Thi Le
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam
| | - Huyen-Thu Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hung Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- College of Health Sciences, Vin University, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hai Do
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Viet Nam
| | - Binh Thanh Mai
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Viet Nam
| | - Ha Thi Ngoc Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Uyen Thi Trang Than
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Thanh-Hong Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| |
Collapse
|
7
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
8
|
Zhu S, Kong X, Song M, Chi M, Liu Y, Zhang P, Zhang Q, Shang P, Feng F. MiR-223-3p attenuates the migration and invasion of NSCLC cells by regulating NLRP3. Front Oncol 2022; 12:985962. [PMID: 36276078 PMCID: PMC9583869 DOI: 10.3389/fonc.2022.985962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the malignant tumor with high invasion and metastasis, which seriously threatens public health. Previous study showed that NLRP3 could promote the occurrence of lung tumors in B(a)P-induced mice. MicroRNAs are closely related to the progression and metastasis of lung cancer by regulating target genes. However, which miRNAs affect the migration and invasion of lung cancer cells through regulating NLRP3 remains poorly defined. In this study, the miRNAs targeting NLRP3 were selected from TargetScan and miRDB database and finally miR-223-3p was chosen due to the consistent expression in both A549 and H520 cells. Then, the migration and invasion of lung cancer cells were detected with miR-223-3p mimic and inhibitor using Transwell assay, at the same time the expression of NLRP3, cleaved caspase-1, IL-1β and IL-18 was determined using Western Blot and immunohistochemistry assay. Our data demonstrated that miR-223-3p was upregulated in both A549 and H520 cells. Furthermore, the migration and invasion of A549 and H520 cells were promoted after inhibiting miR-223-3p. Besides, the levels of NLRP3, cleaved caspase-1, IL-1β and IL-18 were increased in the two lung cancer cells. And the corresponding results were contrary in miR-223-3p mimic group. Taken together, miR-223-3p attenuates the migration and invasion of NSCLC cells by regulating NLRP3, which provides evidence for the prevention and targeted treatment of NSCLC.
Collapse
Affiliation(s)
- Shasha Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiangbing Kong
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengru Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingyang Chi
- College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Yitong Liu
- College of Public Health, University of Southern California, Los Angeles, CA, United States
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
- *Correspondence: Feifei Feng, ; Pingping Shang,
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feifei Feng, ; Pingping Shang,
| |
Collapse
|
9
|
Liang D, Tian C, Zhang X. lncRNA MNX1‑AS1 promotes prostate cancer progression through regulating miR‑2113/MDM2 axis. Mol Med Rep 2022; 26:231. [PMID: 35616155 PMCID: PMC9178709 DOI: 10.3892/mmr.2022.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
A growing number of dysregulated long non‑coding (lnc)RNAs have been verified to serve an essential role in human prostate cancer. However, the underlying mechanisms of lncRNA MNX1 Antisense RNA 1 (MNX1‑AS1) in prostate cancer has not been explored. Therefore, the present study aimed to explore the function of MNX1‑AS1 in prostate cancer tumorigenesis and investigate the in‑depth mechanism. The expression of MNX1‑AS1, microRNA (miR)‑2113 and murine double min 2 (MDM2) in prostate cancer tissues and corresponding normal tissues were assessed by reverse transcription‑quantitative PCR. The protein expression levels of MDM2 were detected by western blotting. LNCaP and PC‑3 cells were transfected with short hairpin (sh)‑MNX1‑AS1, miR‑2113 mimics, miR‑2113 inhibitor and pCDH‑MDM2 vector using Lipofectamine® 3000. Cell proliferation, migration and invasion abilities were assessed by CCK‑8 assay, colony formation and Transwell assay, respectively. Dual luciferase reporter assay was carried out to confirm the putative targets of MNX1‑AS1 and miR‑2113. Tumor formation experiment in nude mice was applied to evaluate the tumor growth effect of MNX1‑AS1 in vivo. The expression of MNX1‑AS1 was significantly upregulated in the prostate cancer tissues and cell lines. MNX1‑AS1 knockdown suppressed the abilities of cell viability and migration and invasion in vitro and inhibited tumor growth in vivo. Additionally, luciferase reporter assay revealed that MNX1‑AS1 could target miR‑2113 and negatively interacted with miR‑2113 in prostate cancer cells. miR‑2113 directly targeted to MDM2 and negatively modulated the expression of MDM2. Rescue assays suggested that the viability, migration and invasion of impaired cells triggered by transfection with sh‑MNX1‑AS1 alone could be recovered by co‑transfection with sh‑MNX1‑AS1 + miR‑2113 inhibitor or sh‑MNX1‑AS1 + pCDH‑ MDM2 vector. The present study demonstrated that MNX1‑AS1 promoted prostate cancer progression through regulating miR‑2113/ MDM2 axis.
Collapse
Affiliation(s)
- Dong Liang
- Department of Urology Surgery, Binhai County Hospital of TCM, Yancheng, Jiangsu 224500, P.R. China
| | - Chuanjie Tian
- Department of Urology Surgery, Heqiao Hospital, Heqiao, Yixing, Jiangsu 214200, P.R. China
| | - Xiaowen Zhang
- Department of Urology Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
10
|
Resveratrol Contrasts IL-6 Pro-Growth Effects and Promotes Autophagy-Mediated Cancer Cell Dormancy in 3D Ovarian Cancer: Role of miR-1305 and of Its Target ARH-I. Cancers (Basel) 2022; 14:cancers14092142. [PMID: 35565270 PMCID: PMC9101105 DOI: 10.3390/cancers14092142] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor dormancy is the extended period during which patients are asymptomatic before recurrence, and it represents a difficult phenomenon to target pharmacologically. The relapse of tumors, for instance arising from the interruption of dormant metastases, is frequently observed in ovarian cancer patients and determines poor survival. Inflammatory cytokines present in the tumor microenvironment likely contribute to such events. Cancer cell dormancy and autophagy are interconnected at the molecular level through ARH-I (DIRAS3) and BECLIN-1, two tumor suppressors often dysregulated in ovarian cancers. IL-6 disrupts autophagy in ovarian cancer cells via miRNAs downregulation of ARH-I, an effect contrasted by the nutraceutical protein restriction mimetic resveratrol (RV). By using three ovarian cancer cell lines with different genetic background in 2D and 3D models, the latter mimicking the growth of peritoneal metastases, we show that RV keeps the cancer cells in a dormant-like quiescent state contrasting the IL-6 growth-promoting activity. Mechanistically, this effect is mediated by BECLIN-1-dependent autophagy and relies on the availability of ARH-I. We also show that ARH-I (DIRAS3) is a bona fide target of miR-1305, a novel oncomiRNA upregulated by IL-6 and downregulated by RV. Clinically relevant, bioinformatic analysis of a transcriptomic database showed that the high expression of DIRAS3 and MAP1LC3B mRNAs together with that of CDKN1A, directing a cellular dormant phenotype, predicts better overall survival in ovarian cancer patients, and this correlates with MIR1305 downregulation. The possibility of maintaining a permanent cell dormancy in ovarian cancer by the chronic administration of RV should be considered as a therapeutic option to prevent the "awakening" of cancer cells in response to a permissive microenvironment, thus limiting the risk of tumor relapse and metastasis.
Collapse
|
11
|
Circ_0005576 Exerts an Oncogenic Role in Cervical Cancer via miR-1305-Dependent Regulation of PAIP1. Reprod Sci 2022; 29:2647-2658. [PMID: 35378711 PMCID: PMC9444835 DOI: 10.1007/s43032-022-00925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/16/2022] [Indexed: 11/05/2022]
Abstract
Cervical cancer (CC) is a leading cause of high morbidity and mortality in women worldwide. Circular RNAs (circRNAs) are considered to be essential regulators of various cancers, including CC. The purpose of this study was to investigate the role and mechanism of circ_0005576 in CC progression. The levels of circ_0005576, miR-1305, and poly(A)-binding protein-interacting protein 1 (PAIP1) were detected by quantitative real-time PCR (qRT-PCR) or western blot assay. The stability and location of circ_0005576 were determined by ribonuclease R (RNase R) assay and subcellular fractionation distribution assay, respectively. Cell proliferation was evaluated by CCK-8 assay, EDU incorporation assay, and colony formation assay. Cell migration and invasion were assessed by transwell assay. The interactions between miR-1305 and circ_0005576 or PAIP1 were validated by dual-luciferase reporter assay. The protein expression of cyclin D1, vimentin, and matrix metallopeptidase 9 (MMP9) was tested by western blot. Moreover, mice xenograft models were constructed to analyze tumor growth in vivo. Circ_0005576 and PAIP1 were upregulated, while miR-1305 was downregulated in CC tissues and cells. Circ_0005576 was a stable circRNA that was mainly distributed in the cytoplasm of cells. Knockdown of circ_0005576 suppressed the proliferation, migration, and invasion of CC cells, while the silence of miR-1305 facilitated the development of CC cells. Meanwhile, circ_0005576 could sponge miR-1305 to promote PAIP1 expression. Furthermore, PAIP1 overexpression relieved the influence of circ_0005576 silence on the growth of CC cells. Additionally, circ_0005576 silence hindered CC tumor growth in vivo. Circ_0005576 depletion suppressed tumor development in CC by regulating the miR-1305/PAIP1 axis, suggesting that circ_0005576 might be a potential biomarker for CC treatment.
Collapse
|
12
|
Chang F, Li J, Sun Q, Wei S, Song Y. Hsa_circ_0017639 regulates cisplatin resistance and tumor growth via acting as a miR-1296-5p molecular sponge and modulating sine oculis homeobox 1 expression in non-small cell lung cancer. Bioengineered 2022; 13:8806-8822. [PMID: 35287543 PMCID: PMC9161884 DOI: 10.1080/21655979.2022.2053810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (DDP)-induced chemoresistance is an important reason for the failure of non-small cell lung cancer (NSCLC) treatment. Circular RNAs (circRNAs) participate in the chemoresistance of diverse cancers. However, the function of hsa_circ_0017639 (circ_0017639) in the DDP resistance of NSCLC is unclear. Forty-one NSCLC samples (21 DDP-resistant samples and 20 DDP-sensitive samples) were utilized in the research. The relative expression levels of some genes were determined by real-time quantitative polymerase chain reaction (RT-qPCR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay for half-maximal inhibitory concentration (IC50) value of DDP and cell viability, colony formation and 5-ethynyl-2’-deoxyuridine (EDU) assays for cell proliferation, flow cytometry assay for cell apoptosis, transwell assay for cell invasion and wound-healing assay for cell migration were performed. The regulation mechanism of circ_0017639 was demonstrated by a dual-luciferase reporter assay. We observed higher levels of circ_0017639 in DDP-resistant NSCLC samples and cells. Functionally, circ_0017639 silencing decreased tumor growth and elevated DDP sensitivity in vivo and induced apoptosis, repressed proliferation, invasion, and migration of DDP-resistant NSCLC cells in vitro. Mechanically, circ_0017639 modulated sine oculis homeobox 1 (SIX1) expression via sponging microRNA (miR)-1296-5p. Also, miR-1296-5p inhibitor restored circ_0017639 knockdown-mediated impacts on cell DDP resistance in DDP-resistant NSCLCs. Furthermore, SIX1 overexpression counteracted the inhibiting impact of miR-1296-5p upregulation on DDP resistance and malignant phenotypes of DDP-resistant NSCLC cells. In conclusion, circ_0017639 conferred DDP resistance and promoted tumor growth via elevating SIX1 expression through sequestering miR-1296-5p in NSCLC, providing a new mechanism for understanding the chemoresistance and progression of NSCLC.
Collapse
Affiliation(s)
- Feiyun Chang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Jiali Li
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Quan Sun
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Shuqing Wei
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| |
Collapse
|
13
|
Zhao Q, Zhang B, Li Z, Tang W, Du L, Sang H. Effects of IncRNA PROX1-AS1 on Proliferation, Migration, Invasion and Apoptosis of Lung Cancer Cells by Regulating MiR-1305. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9570900. [PMID: 35281529 PMCID: PMC8906948 DOI: 10.1155/2022/9570900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
This paper aims to explore the lncRNA PROX1-AS1 effect on proliferation, migration, invasion, and apoptosis of lung cancer cells together with its targeted regulation on miR-1305. To adopt qRT-PCR to test PROX1-AS1 and miR-1305 expression levels in lung cancer tissues and adjacent tissues. Lung cancer cells A549 were cultured in vitro and randomly divided into several groups, which are si-NC, si-PROX1-AS1, miR-NC, miR-1305, si-PROX1-AS1 plus anti-miR-NC, and si-PROX1-AS1 plus anti-miR-1305. To adopt the CCK-8 method to test cell proliferation and to adopt the Transwell chamber experiment to test cell migration and invasion. To adopt the flow cytometry method to test the apoptosis rate. Through a dual luciferase experiment, we decided to find out the targeting relationship between PROX1-AS1 and miR-1305. Then we adopted the western blot method to test CyclinD1, MMP-2, MMP-9, Bcl-2, p21, and Bax expression levels. Compared with adjacent tissues (P < 0.05), the expression of PROX1-AS1 in lung cancer tissue was remarkably higher, while the expression of miR-1305 was remarkably lower (P < 0.05). After PROX1-AS1 knockdown expression or miR-1305 overexpression, cell activity, migration, and invasion ability were outstandingly lowered (P < 0.05), but the apoptosis rate was obviously raised (P < 0.05), CyclinD1, MMP-2, Bcl-2, and MMP-9 protein data were remarkably reduced (P < 0.05), but p21 and Bax protein conditions were outstandingly enhanced (P < 0.05). The dual luciferase experiment confirmed that PROX1-AS1 had a targeting relationship with miR-1305. After cotransfection with si-PROX1-AS1 and anti-miR-1305, the cell viability, migration and invasion ability were remarkably enhanced (P < 0.05), the apoptosis rate was remarkably reduced (P < 0.05), CyclinD1, MMP-2, Bcl-2, and MMP-9 protein were increased remarkably (P < 0.05), and p21 or Bax protein was lowered remarkably (P < 0.05). On the one hand, PROX1-AS1 can promote lung cancer proliferation, migration, and invasion. On the other hand, it may restrain apoptosis, possibly through inhibiting miR-1305 expression.
Collapse
Affiliation(s)
- Quanneng Zhao
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
| | - Bing Zhang
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
| | - Zhilian Li
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
| | - Wei Tang
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
| | - Lijun Du
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
| | - Hongyang Sang
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
| |
Collapse
|
14
|
Li JX, Wang JJ, Deng ZF, Zheng H, Yang CM, Yuan Y, Yang C, Gu FF, Wu WQ, Qiao GL, Ma LJ. Circular RNA circ_0008934 promotes hepatocellular carcinoma growth and metastasis through modulating miR-1305/TMTC3 axis. Hum Cell 2022; 35:498-510. [PMID: 35015267 DOI: 10.1007/s13577-021-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Circular RNAs (circRNAs) play important roles in the progression of hepatocellular carcinoma (HCC). However, the exact function of circ_0008934 in HCC is unknown. Our study aimed to investigate the expression characteristics of circ_0008934 in HCC and its effects on the proliferation and metastasis of HCC, and to explore the potential mechanism. In this study, circ_0008934 expression was found to be significantly upregulated in HCC tissues and cell lines by qRT-PCR. High level of circ_0008934 is closely associated with higher serum AFP (P < 0.001), larger tumor diameter (P = 0.012), microvascular invasion (P = 0.008) and poorer prognosis (P = 0.007) of HCC patients. Functionally, knockdown of circ_0008934 inhibited HCC cell proliferation, invasion and migration in vitro and vivo. Mechanically, circ_0008934 was a sponge of miR-1305 to facilitate the TMTC3 expression, and the TMTC3 expression in HCC tissues was negatively associated with the survival of HCC patients. Furthermore, rescued assays revealed that the circ_0008934 facilitated HCC proliferation, invasion and migration by regulating miR-1305/ TMTC3 signaling pathways. Overall, these results demonstrate that downregulation of circ_0008934 repress HCC growth and metastasis by upregulating miR-1305 to inhibit TMTC3, suggesting circ_0008934/ miR-1305/ TMTC3 regulatory axis may be a possible novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jia-Xi Li
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Jin-Jiang Wang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Zhou-Feng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Hao Zheng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,The Department of Reproductive Genetic Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Mei Yang
- Department of Laboratory, Shunyi District Hospital, Beijing, 101300, China
| | - Ying Yuan
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Cheng Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Fang-Fang Gu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Wei-Qi Wu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| | - Guang-Lei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| | - Li-Jun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
15
|
Hu R, Yu Y, Wang H. The LMCD1-AS1/miR-526b-3p/OSBPL5 axis promotes cell proliferation, migration and invasion in non-small cell lung cancer. BMC Pulm Med 2022; 22:30. [PMID: 35000595 PMCID: PMC8744214 DOI: 10.1186/s12890-022-01820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To explore the specific role and regulatory mechanism of oxysterol binding protein like 5 (OSBPL5) in non-small cell lung cancer (NSCLC). METHODS AND RESULTS Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that OSBPL5 expression was notably elevated in NSCLC tissues and cell lines, and Kaplan-Meier analysis manifested that high OSBPL5 expression was closely related to the poor prognosis of NSCLC patients. Besides, according to the results from western blot analysis, cell counting kit-8, EdU and Transwell assays, knockdown of OSBPL5 suppressed NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process. Additionally, by performing qRT-PCR analysis, luciferase reporter and RNA pull-down assays, we verified that OSBPL5 was a downstream target of miR-526b-3p and long noncoding RNA (lncRNA) LMCD1-AS1 served as a sponge for miR-526b-3p. Moreover, from rescue assays, we observed that OSBPL5 overexpression offset LMCD1-AS1 knockdown-mediated inhibition in cell proliferation, migration, invasion and EMT in NSCLC. CONCLUSIONS This paper was the first to probe the molecular regulatory mechanism of OSBPL5 involving the LMCD1-AS1/miR-526b-3p axis in NSCLC and our results revealed that the LMCD1-AS1/miR-526b-3p/OSBPL5 axis facilitates NSCLC cell proliferation, migration, invasion and EMT, which may offer a novel therapeutic direction for NSCLC.
Collapse
Affiliation(s)
- Rui Hu
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China
| | - Yankai Yu
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China
| | - Haining Wang
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China.
| |
Collapse
|
16
|
Affiliation(s)
| | - Jennifer D Cohen
- Jennifer D. Cohen, Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121-1964, USA. E-mail:
| | | | - Lauren Lewis
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Lei Shen
- Data Science Institute, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Xie L, Cheng S, Fan Z, Sang H, Li Q, Wu S. SKA3, negatively regulated by miR-128-3p, promotes the progression of non-small-cell lung cancer. Per Med 2021; 19:193-205. [PMID: 34533066 DOI: 10.2217/pme-2020-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effects of SKA3 on cell proliferation and metastasis in non-small-cell lung cancer (NSCLC) and its underlying mechanism. Methods: Immunohistochemistry was employed to analyze the expression of SKA3 in NSCLC. CCK-8 assay, EdU assay, Transwell assay and flow cytometry analysis were employed to assess cell proliferation, metastatic potential and apoptosis in vitro, respectively. A lung metastasis model was used to evaluate metastasis of NSCLC cells in vivo. A luciferase reporter gene assay was conducted to verify the targeting relationship. Results: SKA3 exhibited high expression in NSCLC tissues and cells. Overexpression of SKA3 remarkably accelerated cell proliferation and metastasis and suppressed apoptosis of NSCLC cells and promoted lung metastasis in a mouse model. miR-128-3p repressed SKA3 expression by targeting it. Conclusion: miR-128-3p inhibited the progression of NSCLC through targeting SKA3.
Collapse
Affiliation(s)
- Linlin Xie
- Department of Foundation Courses, Anhui Medical College, Hefei, 230601, China
| | - Shaofei Cheng
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 201308, China
| | - Zhengyang Fan
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 201308, China
| | - Hongyang Sang
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 201308, China
| | - Qianping Li
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 201308, China
| | - Song Wu
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 201308, China
| |
Collapse
|
18
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
19
|
Han Y, You J, Han Y, Liu Y, Huang M, Lu X, Chen J, Zheng Y. LINC00184 Promotes Ovarian Cancer Cells Proliferation and Cisplatin Resistance by Elevating CNTN1 Expression via Sponging miR-1305. Onco Targets Ther 2021; 14:2711-2726. [PMID: 33907415 PMCID: PMC8064690 DOI: 10.2147/ott.s280490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Cisplatin resistance is one of the main reasons for treatment failure in ovarian cancer (OC). Here, the effects of LINC00184 on cisplatin-resistant OC were studied. Patients and Methods LINC00184, miR-1305 and CNTN1 expression in tissues from 70 OC patients was determined by qRT-PCR, in situ hybridization and Western blot. OC cell lines and OC cisplatin-resistant cell lines were cultured. Cells were transfected using Lipofectamine 2000 and treated with 100 nM cisplatin. Cell proliferation and apoptosis were researched by the CCK-8 assay and flow cytometry. A dual-luciferase reporter gene assay and RNA pull-down were performed to explore the relationship between two genes. LINC00184, miR-1305 and CNTN1 expression in cells was detected by qRT-PCR and Western blot. An in vivo experiment was conducted using nude mice. Ki67 and CNTN1 expression and apoptosis of xenograft tumors were investigated using immunohistochemistry and a TUNEL assay. Results LINC00184 was up-regulated in OC clinical tissues and OC cells, especially in cisplatin-resistant OC patients and cells (p<0.01 or p<0.0001). LINC00184 overexpression significantly enhanced OC cell proliferation and cisplatin resistance, and inhibited OC cell apoptosis (p<0.05 or p<0.01). LINC00184 elevated CNTN1 expression via sponging miR-1305. LINC00184 overexpression markedly exacerbated the malignant phenotype of OC cells and cisplatin-resistant OC cells via the miR-1305/CNTN1 axis (p<0.01). Silencing of LINC00184 significantly suppressed OC cell growth and cisplatin resistance in vivo (p<0.01). LINC00184 silencing inhibited Ki67 and CNTN1 expression and promoted apoptosis of xenograft tumors. CNTN1 overexpression promoted proliferation and cisplatin resistance, and reduced apoptosis of OC cells (p<0.05 or p<0.01). Conclusion LINC00184 promoted OC cell proliferation and cisplatin resistance by elevating CNTN1 expression via sponging miR-1305.
Collapse
Affiliation(s)
- Yuwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jun You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yinglei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Menghui Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaoyan Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
20
|
Zhang J, Han L, Yu J, Li H, Li Q. miR-224 aggravates cancer-associated fibroblast-induced progression of non-small cell lung cancer by modulating a positive loop of the SIRT3/AMPK/mTOR/HIF-1α axis. Aging (Albany NY) 2021; 13:10431-10449. [PMID: 33819917 PMCID: PMC8064154 DOI: 10.18632/aging.202803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cancer-associated fibroblast (CAF) is among the most important tumor-host microenvironment components by affecting tumor progression. This study explored the role of miR-224 in CAF-induced non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A CAF-NSCLC cell co-culture model was established, and the miR-224 expression in CAF was detected by reverse transcription-polymerase chain reaction (RT-PCR). Gain- and loss- of experiments of miR-224 were implemented to verify the effects of CAF on NSCLC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT), and endothelial cell (EC) angiogenesis. Overexpressing genetic or pharmacological interventions were performed to explore the potential mechanisms of Sirtuins 3/AMP-activated protein kinase/mammalian target of rapamycin/hypoxia-inducible factor-1α (SIRT3/AMPK/mTOR/HIF-1α). RESULTS CAF enhanced the malignant phenotype of NSCLC cells and induced EC angiogenesis. miR-224 was significantly altered in CAFs. miR-224 up-regulation exacerbated NSCLC development mediated by CAFs, while miR-224 inhibition mostly reversed CAF-induced effects. Mechanistically, miR-224 targeted the 3'-untranslated regions (UTR) of SIRT3 mRNA, thereby inhibiting SIRT3/AMPK and activating mTOR/HIF-1α. Forced overexpression of SIRT3 up-regulated AMPK and inactivated mTOR/HIF-1α, while inhibiting HIF-1α markedly up-regulated SIRT3/AMPK and reduced mTOR phosphorylation. Interestingly, both Sirt1 overexpression and HIF-1α inhibition repressed miR-224 levels and miR-224-mediated promotive effects in NSCLC. CONCLUSION The miR-224-SIRT3/AMPK/mTOR/HIF-1α axis formed a positive feedback loop in modulating CAF-induced carcinogenic effects on NSCLC.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Lan Han
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Jing Yu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Hui Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Qingfeng Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| |
Collapse
|
21
|
Lee JY, Ryu D, Lim SW, Ryu KJ, Choi ME, Yoon SE, Kim K, Park C, Kim SJ. Exosomal miR-1305 in the oncogenic activity of hypoxic multiple myeloma cells: a biomarker for predicting prognosis. J Cancer 2021; 12:2825-2834. [PMID: 33854583 PMCID: PMC8040895 DOI: 10.7150/jca.55553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Exosomes have emerged as important mediators of tumor progression, and a prognostic role for serum exosomal miRNAs has been suggested in multiple myeloma (MM). Given the association of hypoxia with tumor aggressiveness, including cancer stem cell-like phenotypes, we explored exosomal miRNAs from MM cells under hypoxic conditions and analyzed their diverse roles both in promoting oncogenic activity and in predicting prognosis. Methods: The human MM cell line, RPMI 8226, was cultured under hypoxic conditions and their exosome production and exosomal miRNA profiles were compared with those of normoxic parental cells. The survival outcome of myeloma patients was compared using serum levels of exosomal miRNAs, and the effects of exosomal miRNAs on the target genes of MM cells and adjacent immune cells were analyzed. Results: Increased expression of stem cell markers and exosome production were observed in hypoxic MM cells. Exosome miRNA analysis identified a higher expression of miR-1305 in exosomes isolated from hypoxic MM cells than in those of normoxic parental cells. The overall survival of patients with high exosomal miR-1305 was poorer than it was in patients with low exosomal miR-1305. In hypoxic MM cells, an increase of exosomal miR-1305 led to a decrease of cellular miR-1305 and increased expression of the miR-1305 target genes, MDM2, IGF1 and FGF2 resulted in the promotion of oncogenic activity of MM. Exosomal miR-1305 was also transferred from MM cells to macrophages, and miR-1305-transferred macrophages showed tumor-promoting, M2-macrophage phenotypes. Conclusions: Exosome-mediated secretion of miR-1305 in MM cells promoted oncogenic activity of hypoxic MM cells and high serum levels of exosomal miR-1305.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Daeun Ryu
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Lim
- Division of Hematology-Oncology, Department of Medicine, H plus Yangji hospital, Seoul, Korea
| | - Kyung Ju Ryu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Myung Eun Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chaehwa Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
23
|
Henn D, Abu-Halima M, Kahraman M, Falkner F, Fischer KS, Barrera JA, Chen K, Gurtner GC, Keller A, Kneser U, Meese E, Schmidt VJ. A multivariable miRNA signature delineates the systemic hemodynamic impact of arteriovenous shunt placement in a pilot study. Sci Rep 2020; 10:21809. [PMID: 33311598 PMCID: PMC7733519 DOI: 10.1038/s41598-020-78905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
Arteriovenous (AV) fistulas for hemodialysis can lead to cardiac volume loading and increased serum brain natriuretic peptide (BNP) levels. Whether short-term AV loop placement in patients undergoing microsurgery has an impact on cardiac biomarkers and circulating microRNAs (miRNAs), potentially indicating an increased hemodynamic risk, remains elusive. Fifteen patients underwent AV loop placement with delayed free flap anastomosis for microsurgical reconstructions of lower extremity soft-tissue defects. N-terminal pro-BNP (NT-proBNP), copeptin (CT-proAVP), and miRNA expression profiles were determined in the peripheral blood before and after AV loop placement. MiRNA expression in the blood was correlated with miRNA expression from AV loop vascular tissue. Serum NT-proBNP and copeptin levels exceeded the upper reference limit after AV loop placement, with an especially strong NT-proBNP increase in patients with preexistent cardiac diseases. A miRNA signature of 4 up-regulated (miR-3198, miR-3127-5p, miR-1305, miR-1288-3p) and 2 down-regulated miRNAs (miR30a-5p, miR-145-5p) which are related to cardiovascular physiology, showed a significant systemic deregulation in blood and venous tissue after AV loop placement. AV loop placement causes serum elevations of NT-proBNP, copeptin as well as specific circulating miRNAs, indicating a potentially increased hemodynamic risk for patients with cardiovascular comorbidities, if free flap anastomosis is delayed.
Collapse
Affiliation(s)
- Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr. West, Stanford, CA, 94305, USA. .,BG Trauma Center Ludwigshafen, Heidelberg University, Ludwigshafen, Germany.
| | | | - Mustafa Kahraman
- Institute for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Florian Falkner
- BG Trauma Center Ludwigshafen, Heidelberg University, Ludwigshafen, Germany
| | | | - Janos A Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr. West, Stanford, CA, 94305, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr. West, Stanford, CA, 94305, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr. West, Stanford, CA, 94305, USA
| | - Andreas Keller
- Institute for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Ulrich Kneser
- BG Trauma Center Ludwigshafen, Heidelberg University, Ludwigshafen, Germany
| | - Eckart Meese
- Institute for Human Genetics, Saarland University, Homburg, Germany
| | - Volker J Schmidt
- BG Trauma Center Ludwigshafen, Heidelberg University, Ludwigshafen, Germany.,Department for Plastic and Breast Surgery, Zealand University Hospital Roskilde, Roskilde, Denmark
| |
Collapse
|
24
|
Li X, Song L, Wang B, Tao C, Shi L, Xu M. Circ0120816 acts as an oncogene of esophageal squamous cell carcinoma by inhibiting miR-1305 and releasing TXNRD1. Cancer Cell Int 2020; 20:526. [PMID: 33292234 PMCID: PMC7597039 DOI: 10.1186/s12935-020-01617-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been discovered to participate in the carcinogenesis of multiple cancers. However, the role of circRNAs in esophageal squamous cell carcinoma (ESCC) progression is yet to be properly understood. This research aimed to investigate and understand the mechanism used by circRNAs to regulate ESCC progression. METHODS Bioinformatics analysis was first performed to screen dysregulated circRNAs and differentially expressed genes in ESCC. The ESCC tissue samples and adjacent normal tissue samples utilized in this study were obtained from 36 ESCC patients. All the samples were subjected to qRT-PCR analysis to identify the expression of TXNRD1, circRNAs, and miR-1305. Luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay were later conducted to verify the existing relationship among circ0120816, miR-1305 and TXNRD1. CCK-8, BrdU, cell adhesion, cell cycle, western blot and caspase 3 activity assays were also employed to evaluate the regulation of these three biological molecules in ESCC carcinogenesis. To evaluate the effect of circ0120816 on ESCC tumor growth and metastasis, the xenograft mice model was constructed. RESULTS Experimental investigations revealed that circ0120816 was the highest upregulated circRNA in ESCC tissues and that this non-coding RNA acted as a miR-1305 sponge in enhancing cell viability, cell proliferation, and cell adhesion as well as repressing cell apoptosis in ESCC cell lines. Moreover, miR-1305 was observed to exert a tumor-suppressive effect in ESCC cells by directly targeting and repressing TXNRD1. It was also noticed that TXNRD1 could regulate cyclin, cell adhesion molecule, and apoptosis-related proteins. Furthermore, silencing circ0120816 was found to repress ESCC tumor growth and metastasis in vivo. CONCLUSIONS This research confirmed that circ0120816 played an active role in promoting ESCC development by targeting miR-1305 and upregulating oncogene TXNRD1.
Collapse
Affiliation(s)
- Xiaoyong Li
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Laichun Song
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Bo Wang
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Chao Tao
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Lei Shi
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Ming Xu
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
25
|
Liang Z, Zhong Y, Meng L, Chen Y, Liu Y, Wu A, Li X, Wang M. HAX1 enhances the survival and metastasis of non-small cell lung cancer through the AKT/mTOR and MDM2/p53 signaling pathway. Thorac Cancer 2020; 11:3155-3167. [PMID: 32926529 PMCID: PMC7606027 DOI: 10.1111/1759-7714.13634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background HS‐1‐associated protein‐1 (HAX1) has been reported to be overexpressed in non‐small cell lung cancer (NSCLC) tissues. However, the underlying mechanism of HAX1 in NSCLC has not previously been demonstrated. The present study investigated the role and underlying mechanism of HAX1 in NSCLC. Methods The HAX1 expression were confirmed in NSCLC tissues through TCGA database and qRT‐PCR. Moreover, we performed qRT‐PCR, Western blotting, Transwell assays, TUNEL assays and so on to evaluate the role of HAX1 in A549 and H1299 cell lines. Results mRNA expression of HAX1 was overexpressed in NSCLC tissues compared to adjacent normal tissues according to The Cancer Genome Atlas (TCGA) database. QRT‐PCR assays showed that HAX1 mRNA expression was upregulated in NSCLC tissues. The high HAX1 mRNA levels were found to be positively associated with tumor size, TNM stage and lymphatic metastasis. Silencing of HAX1 promoted apoptosis and reduced invasion of A549 and H1299 cells by inhibiting the AKT/mTOR and MDM2/P53 signal pathway. AKT agonist SC79 could inhibit apoptosis and promote proliferation, migration and invasion of A549 and H1299 cells transfected with si‐HAX1. Conclusions The present study provided a better understanding of HAX1 mechanism in NSCLC and potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuan Zhong
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yi Chen
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yahui Liu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Aihua Wu
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Li J, Zhang X, Tang J, Gong C. MicroRNA-374b-5p Functions as a Tumor Suppressor in Non-Small Cell Lung Cancer by Targeting FOXP1 and Predicts Prognosis of Cancer Patients. Onco Targets Ther 2020; 13:4229-4237. [PMID: 32523358 PMCID: PMC7237128 DOI: 10.2147/ott.s243221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Lung cancer remains the most frequent malignancy worldwide with increasing morbidity and mortality. This study aimed to assess the expression of microRNA-374b-5p (miR-374b-5p) in tissues and cell lines of non-small cell lung cancer (NSCLC) and to evaluate the prognostic value of miR-374b-5p as well as its biological function in tumor progression. Materials and Methods Expression of miR-374b-5p in NSCLC patients and cells was estimated using quantitative real-time PCR. The prognostic value of miR-374b-5p was evaluated using Kaplan–Meier method and Cox regression analysis. Gain-of-function and loss-of-function cell experiments were performed to examine the effects of miR-374b-5p on NSCLC cell proliferation, migration and invasion. A luciferase activity assay was used to confirm the target gene of miR-374b-5p. Results miR-374b-5p expression levels were decreased in tumorous tissues and cell lines compared with the normal tissues or cells (P < 0.05). The expression of miR-374b-5p was associated with the patients’ tumor size, lymph node metastasis and TNM stage (all P < 0.05). Patients with low miR-374b-5p expression have a shorter survival time (log-rank P = 0.001), and the downregulated expression of miR-374b-5p was determined to be an independent prognostic indicator of NSCLC. In NSCLC cells, the overexpression of miR-374b-5p could inhibit NSCLC cell proliferation, migration and invasion and could directly target FOXP1. Conclusion This study found that the decreased miR-374b-5p predicts poor prognosis of NSCLC, and the upregulation of miR-374b-5p can inhibit NSCLC cell proliferation, migration and invasion. The data obtained from this study provide a novel candidate prognostic biomarker and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jianzhao Li
- Department of Pathology, Central Hospital of Zibo, Zibo, Shandong 255000, People's Republic of China
| | - Xinfang Zhang
- Clinical Laboratory, Qilu Hospital Huantai Branch, Zibo, Shandong 256400, People's Republic of China
| | - Jiaying Tang
- Department of Blood Transfection, Central Hospital of Zibo, Zibo, Shandong 255000, People's Republic of China
| | - Cuixue Gong
- Outpatient Dressing Room, Central Hospital of Zibo, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|