1
|
Abumustafa W, Castven D, Sharif-Askari FS, Abi Zamer B, Hamad M, Marquardt JU, Muhammad JS. PRMT5 Mediated HIF1α Signaling and Ras-Related Nuclear Protein as Promising Biomarker in Hepatocellular Carcinoma. BIOLOGY 2024; 13:216. [PMID: 38666828 PMCID: PMC11048327 DOI: 10.3390/biology13040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) has been identified as a potential therapeutic target for various cancer types. However, its role in regulating the hepatocellular carcinoma (HCC) transcriptome remains poorly understood. In this study, publicly available databases were employed to investigate PRMT5 expression, its correlation with overall survival, targeted pathways, and genes of interest in HCC. Additionally, we utilized in-house generated NGS data to explore PRMT5 expression in dysplastic nodules compared to hepatocellular carcinoma. Our findings revealed that PRMT5 is significantly overexpressed in HCC compared to normal liver, and elevated expression correlates with poor overall survival. To gain insights into the mechanism driving PRMT5 overexpression in HCC, we analyzed promoter CpG islands and methylation status in HCC compared to normal tissues. Pathway analysis of PRMT5 knockdown in the HCC cells revealed a connection between PRMT5 expression and genes related to the HIF1α pathway. Additionally, by filtering PRMT5-correlated genes within the HIF1α pathway and selecting up/downregulated genes in HCC patients, we identified Ras-related nuclear protein (RAN) as a target associated with overall survival. For the first time, we report that PRMT5 is implicated in the regulation of HIF1A and RAN genes, suggesting the potential prognostic utility of PRMT5 in HCC.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Fatemeh Saheb Sharif-Askari
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jens-Uwe Marquardt
- First Medical Department, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
2
|
Hei N, Chen Y, Peng S, Bao Y, Jin L. Circular RNA_0076977 contributes to oral squamous cell carcinoma progression through mediating microRNA-802 axis. Arch Oral Biol 2022; 144:105567. [DOI: 10.1016/j.archoralbio.2022.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
|
3
|
Opazo-Ríos L, Tejera-Muñoz A, Soto Catalan M, Marchant V, Lavoz C, Mas Fontao S, Moreno JA, Fierro Fernandez M, Ramos R, Suarez-Alvarez B, López-Larrea C, Ruiz-Ortega M, Egido J, Rodrigues-Díez RR. Kidney microRNA Expression Pattern in Type 2 Diabetic Nephropathy in BTBR Ob/Ob Mice. Front Pharmacol 2022; 13:778776. [PMID: 35370692 PMCID: PMC8966705 DOI: 10.3389/fphar.2022.778776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide. Although remarkable therapeutic advances have been made during the last few years, there still exists a high residual risk of disease progression to end-stage renal failure. To further understand the pathogenesis of tissue injury in this disease, by means of the Next-Generation Sequencing, we have studied the microRNA (miRNA) differential expression pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation) mouse. This experimental model of type 2 diabetes and obesity recapitulates the key histopathological features described in advanced human DN and therefore can provide potential useful translational information. The miRNA-seq analysis, performed in the renal cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly increased compared to non-diabetic, non-obese control mice of the same age, whereas no miRNAs were significantly decreased. Among them, miR-802, miR-34a, miR-132, miR-101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune processes, as the most relevant pathways, emphasizing the importance of inflammation in the pathogenesis of kidney damage associated to diabetes. Other identified top canonical pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition, the latter supporting the importance of tubular cell phenotype changes in the pathogenesis of DN. These findings could facilitate a better understanding of this complex disease and potentially open new avenues for the design of novel therapeutic approaches to DN.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción, Chile
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Manuel Soto Catalan
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Mas Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marta Fierro Fernandez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Viral Vectors Service, Madrid, Spain
| | - Ricardo Ramos
- Unidad de Genómica Fundación Parque Científico de Madrid, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Raúl R. Rodrigues-Díez
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
4
|
Dastmalchi N, Safaralizadeh R, Teimourian S. An updated review of the pre-clinical role of microRNAs and their contribution to colorectal cancer. Curr Mol Med 2021; 22:851-859. [PMID: 34961460 DOI: 10.2174/1566524021666211213122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of malignancy-related mortality worldwide. It was well-identified that microRNAs (miRNAs) decisively participate in cellular biological pathways; in a way that their deregulated expression causes CRC progression. miRNAs can control the translation and degradation of mRNAs by binding to various molecular targets involved in different biological processes, including growth, apoptosis, cell cycle, autophagy, angiogenesis, metastasis, etc. The functions of these dysregulated miRNAs may be either oncogenic or tumor-suppressive. Therefore, these miRNAs can be contributed to prognostic, diagnostic, and therapeutic approaches in CRC. In this study, we reviewed the tumor-suppressive and oncogenic functions of miRNAs in CRC and assessed their molecular activities in CRC development. However, further investigation for the involvement of dysregulated miRNAs in CRC progression is required.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of medicine, Iran University of Medical Sciences (IUMS), Tehran. Iran
| |
Collapse
|
5
|
Gao T, Zou M, Shen T, Duan S. Dysfunction of miR-802 in tumors. J Clin Lab Anal 2021; 35:e23989. [PMID: 34558723 PMCID: PMC8605121 DOI: 10.1002/jcla.23989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that miR-802 is abnormally expressed in many tumors. miR-802 is expressed at low levels in tissues and cells of gastric cancer, colorectal cancer, breast cancer, cervical cancer, epithelial ovarian cancer, tongue squamous cell carcinoma, oral squamous cell carcinoma, esophageal squamous cell carcinoma, laryngeal squamous cell carcinoma, and melanoma. In contrast, miR-802 is overexpressed in hepatocellular carcinoma, bladder urothelial cancer, osteosarcoma, and cholesteatoma tissue cells. It should be noted that the results of studies on the expression of miR-802 in pancreatic cancer, prostate cancer, and lung cancer are inconsistent. Current studies have found that miR-802 can target and regulate genes in different tumors, and affect the regulation of the Wnt signaling pathway, EMT signaling pathway, PI3K/AKT signaling pathway, ERK signaling pathway, and Hedgehog signaling pathway. At the same time, miR-802 is regulated by the endogenous competition of four ceRNAs, including circDONSON, IGFL2-AS1, MIR155HG, and MIR4435-2HG. This article reviews the abnormal expression of miR-802 in a variety of tumors, expounds the mechanism by which miR-802 affects tumor progression by regulating different target genes, and elaborates the network of miR-802-related ceRNAs. We also summarized the limitations of miR-802 research and looked forward to the potential application of miR-802 in the diagnosis and prognosis of tumors.
Collapse
Affiliation(s)
- Tong Gao
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Mengsha Zou
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Tiancheng Shen
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China.,School of Medicine, Zhejiang University City College, Hangzhou, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111759. [PMID: 34091180 DOI: 10.1016/j.biopha.2021.111759] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most fatal and fourth most frequently diagnosed neoplasm in the world. Numerous non-coding RNAs have been shown to contribute in the development of CRC. MicroRNAs (miRNAs) are among the mostly assessed non-coding RNAs in CRC. These transcripts influence expression and activity of TGF-β, Wnt/β-catenin, MAPK, PI3K/AKT and other CRC-related pathways. In the context of CRC, miRNAs interact with long non-coding RNAs to influence CRC course. Stool and serum levels of miRNAs have been used to distinguish CRC patients from healthy controls, indicating diagnostic roles of these transcripts in CRC. Therapeutic application of miRNAs in CRC has been assessed in animal models, yet has not been verified in clinical settings. In the current review, we have provided a recent update on the role of miRNAs in CRC development as well as diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ni M, Yan Q, Xue H, Du Y, Zhao S, Zhao Z. Identification of MYLIP gene and miRNA-802 involved in the growth and metastasis of cervical cancer cells. Cancer Biomark 2021; 30:287-298. [PMID: 33185588 DOI: 10.3233/cbm-201523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The dysregulation of microRNA-802 (miR-802) has crucial roles in cancer progression. Nevertheless, the bio-function of miR-802 in cervical cancer remains unclear. OBJECTIVE Hence, we illuminated the potential roles of miR-802 in cervical cancer cell growth, migration, and invasion. METHODS The levels of miR-802 and myosin regulatory light chain interacting protein (MYLIP) were measured using qRT-PCR assay. The potential effects of miRNA-802 on cervical cancer cell proliferation and metastatic phenotypes were determined using CCK-8, colony formation, wound healing and Transwell invasion assays. MYLIP was validated as a downstream target gene of miRNA-802 using bioinformatics analysis tool and luciferase report gene assay. The impact of miR-802 on the growth of cervical cancer cell in vivo was analyzed using xenograft model. The expression of MYLIP was measured by western blotting and immunohistochemistry (IHC). RESULTS MiRNA-802 was distinctly down-regulated in cervical cancer cells as well as clinical cervical cancer samples. Upregulation of miRNA-802 significantly inhibited the growth and aggressiveness of cervical cancer cell. Additional, MYLIP was a functional target of miR-802. MYLIP was ovrerexpressed in cervical cancer and MYLIP level was negatively associated with the level of miR-802. Overexpression of MYLIP eliminated the inhibitory effects of miR-802 on growth and metastatic-related traits of cervical cancer cell. In vivo, miR-802 also markedly reduced the tumor growth of cervical cancer cell and decreased the expression of MYLIP. CONCLUSIONS MiR-802 inhibits the growth and metastatic-related phenotypes of cervical cancer cell through targeting MYLIP.
Collapse
Affiliation(s)
- Ming Ni
- Gynecological Department, Wuhan Hanyang Hospital, Wuhan, Hubei, China.,Gynecological Department, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Qin Yan
- Department of Oncology, Chengdu Fifth People's Hospital, Chengdu, Sichuan, China.,Gynecological Department, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Hui Xue
- Department of Gynecology, The Qingdao Hiser Hospital, Qingdao, Shandong, China
| | - Yanfang Du
- Department of Obstetrics and Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuangdan Zhao
- Department of Obstetrics and Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Wang K, Hu YB, Zhao Y, Ye C. LncRNA ANRIL Regulates Ovarian Cancer Progression and Tumor Stem Cell-Like Characteristics via miR-324-5p/Ran Axis. Onco Targets Ther 2021; 14:565-576. [PMID: 33500630 PMCID: PMC7826075 DOI: 10.2147/ott.s273614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Long non-coding RNA (lncRNA) ANRIL is emerging as a crucial role in ovarian cancer progression and prognosis. However, the precise molecular mechanism of ANRIL on ovarian cancer is not known. Thus, we aim to study the underlying mechanism of ANRIL on the action. Methods The MTT assay assessed cell viability. Cell migration and invasion were determined using the wound healing assay, Transwell migration, and invasion assay. The relationships of ANRIL, miR-324-5p, and RAN were evaluated using luciferase activity assay and RNA pull-down assay. Cancer stem cell was identified by flow cytometry. Sphere formation assay was conducted to determine the stem-like properties. Xenograft tumor was established to assess tumor growth in vivo. qRT-PCR and Western blot were used to detect gene expression. Results ANRIL was elevated while miR-324-5p was decreased in ovarian cancer tissues and cells. Besides, downregulated ANRIL enhanced miR-324-5p expression, and the luciferase reporting experiment and RNA pull-down assay showed the binding interaction between ANRIL and miR-324-5p. miR-324-5p directly targeted Ran and negatively modulated the expression of Ran. Besides, Ran was promoted by overexpressed ANRIL, which was reversed by overexpression of miR-324-5p. Furthermore, decreased ANRIL and increased miR-324-5p suppressed tumor growth, migration capacity, drug resistance, and alleviated stem-like characteristics in vitro and in vivo. Ran mediated the regulation of ANRIL on cell viability, stem-like properties, and drug resistance of ovarian cancer cells. Conclusion The ANRIL/miR-324-5p/Ran axis regulated ovarian cancer development, making the axis meaningful targets for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Gynaecology and Obstetrics, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Yu-Bo Hu
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Ye Zhao
- Department of Dermatology, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Cong Ye
- Department of Gynaecology and Obstetrics, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| |
Collapse
|
9
|
Yang T, Guo Q, Li D, Bai G, Sun H, Wang W. MicroRNA-802 Suppresses Tumorigenesis of Colorectal Cancer via Regulating UBN2. Cancer Manag Res 2020; 12:11219-11230. [PMID: 33177873 PMCID: PMC7649241 DOI: 10.2147/cmar.s267345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/01/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The initiation and progression of colorectal cancer (CRC) are a multistep complex process regulated by multiple factors. Previous evidence indicated that microRNA-802 (miR-802) participated in tumorigenesis of numerous solid cancers; however, the potential roles and underlying mechanisms of miR‑802 in CRC still need further exploration. METHODS Quantitative real-time PCR (qRT-PCR) was employed to evaluate miR-802 levels in human CRC tissues and cell lines. In vitro proliferation, apoptosis, migration and invasion assays, and in vivo subcutaneous mouse xenograft model were utilized to examine the effects of miR-802 on the malignant behaviors of CRC cells. Then, bioinformatics prediction, dual-luciferase reporter, qRT-PCR, and Western blot was conducted to confirm the down-stream target of miR-802. RESULTS MiR-802 was frequently down-regulated in CRC tissues and cells. Further analyses showed that the low expression of miR-802 in CRC tissues was significantly correlated with tumor progression and poor patients' prognosis. Overexpression of miR-802 profoundly inhibited proliferation, migration and invasion but promoted apoptosis of CRC cells, by contrast, miR-802 silencing exhibited opposite effects in vitro. Further animal experiment demonstrated that miR-802 could suppress tumor growth via inhibiting the proliferation and promoting the apoptosis of CRC cells in vivo. Mechanistically, miR-802 functioned as a tumor suppressor through inhibiting the expression of Ubinuclein-2 (UBN2) on post-transcriptional level. Moreover, upregulation of UBN2 expression could reverse the biological effects of CRC cells induced by miR-802 overexpression. CONCLUSION Our study demonstrates that miR-802 inhibits the proliferation, migration and invasion while promotes the apoptosis of CRC cells via directly suppressing UBN2 expression. These findings provide a promising biomarker and potential treatment target for CRC.
Collapse
Affiliation(s)
- Tao Yang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| | - Qiuying Guo
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| | - Dongsheng Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| | - Guang Bai
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| | - Hongzhi Sun
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| |
Collapse
|
10
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
11
|
Chen Z, Zhou J, Wang M, Liu J, Zhang L, Loor JJ, Liang Y, Wu H, Yang Z. Circ09863 Regulates Unsaturated Fatty Acid Metabolism by Adsorbing miR-27a-3p in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8589-8601. [PMID: 32689797 DOI: 10.1021/acs.jafc.0c03917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fatty acid composition plays a key role in regulating flavor and quality of milk. Therefore, in order to improve milk quality, it is particularly important to investigate regulatory mechanisms of milk fatty acid metabolism. Circular RNAs (circRNAs) regulate expression genes associated with several biological processes including fatty acid metabolism. In this study, high-throughput sequencing was used to detect differentially expressed genes in bovine mammary tissue at early lactation and peak lactation. Circ09863 profiles were influenced by the lactation stage. Functional studies in bovine mammary epithelial cells (BMECs) revealed that circ09863 promotes triglyceride (TAG) synthesis together with increased content of unsaturated fatty acids (C16:1 and C18:1). These results suggested that circ09863 is partly responsible for modulating fatty acid metabolism. Additionally, software prediction identified a miR-27a-3p binding site in the circ09863 sequence. Overexpression of miR-27a-3p in BMECs led to decreased TAG synthesis. However, overexpression of circ09863 (pcDNA-circ09863) in BMECs significantly reduced expression of miR-27a-3p and enhanced gene expression of fatty acid synthase (FASN), a target of miR-27a-3p. Overall, data suggest that circ09863 relieves the inhibitory effect of miR-27a-3p on FASN expression by binding miR-27a-3p and subsequently regulating TAG synthesis and fatty acid composition. Together, these mechanisms provide new research avenues and theoretical bases to improve milk quality.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Mengjie Wang
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Jiahua Liu
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Longfei Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Yusheng Liang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Hua Wu
- College of Agriculture and Animal Husbandry, Qinghai University, No.251 Ningda Road, Xining, Qinghai 810016, P. R. China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|