1
|
Cao R, Guo S, Min L, Li P. Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 2024; 51:37. [PMID: 38186315 PMCID: PMC10807360 DOI: 10.3892/or.2024.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re‑sensitization of therapy‑resistant cancers to be made possible.
Collapse
Affiliation(s)
- Ruizhen Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
2
|
Savukaitytė A, Bartnykaitė A, Bekampytė J, Ugenskienė R, Juozaitytė E. DDIT4 Downregulation by siRNA Approach Increases the Activity of Proteins Regulating Fatty Acid Metabolism upon Aspirin Treatment in Human Breast Cancer Cells. Curr Issues Mol Biol 2023; 45:4665-4674. [PMID: 37367045 DOI: 10.3390/cimb45060296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Repositioning of aspirin for a more effective breast cancer (BC) treatment requires identification of predictive biomarkers. However, the molecular mechanism underlying the anticancer activity of aspirin remains fully undefined. Cancer cells enhance de novo fatty acid (FA) synthesis and FA oxidation to maintain a malignant phenotype, and the mechanistic target of rapamycin (mTORC1) is required for lipogenesis. We, therefore, aimed to test if the expression of mTORC1 suppressor DNA damage-inducible transcript (DDIT4) affects the activity of main enzymes in FA metabolism after aspirin treatment. MCF-7 and MDA-MB-468 human BC cell lines were transfected with siRNA to downregulate DDIT4. The expression of carnitine palmitoyltransferase 1 A (CPT1A) and serine 79-phosphorylated acetyl-CoA carboxylase 1 (ACC1) were analyzed by Western Blotting. Aspirin enhanced ACC1 phosphorylation by two-fold in MCF-7 cells and had no effect in MDA-MB-468 cells. Aspirin did not change the expression of CPT1A in either cell line. We have recently reported DDIT4 itself to be upregulated by aspirin. DDIT4 knockdown resulted in 1.5-fold decreased ACC1 phosphorylation (dephosphorylation activates the enzyme), 2-fold increased CPT1A expression in MCF-7 cells, and 2.8-fold reduced phosphorylation of ACC1 following aspirin exposure in MDA-MB-468 cells. Thus, DDIT4 downregulation raised the activity of main lipid metabolism enzymes upon aspirin exposure which is an undesired effect as FA synthesis and oxidation are linked to malignant phenotype. This finding may be clinically relevant as DDIT4 expression has been shown to vary in breast tumors. Our findings justify further, more extensive investigation of the role of DDIT4 in aspirin's effect on fatty acid metabolism in BC cells.
Collapse
Affiliation(s)
- Aistė Savukaitytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Agnė Bartnykaitė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Justina Bekampytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Zhang Y, Dong X, Guo X, Li C, Fan Y, Liu P, Yuan D, Ma X, Wang J, Zheng J, Li H, Gao P. LncRNA-BC069792 suppresses tumor progression by targeting KCNQ4 in breast cancer. Mol Cancer 2023; 22:41. [PMID: 36859185 PMCID: PMC9976483 DOI: 10.1186/s12943-023-01747-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumor that threatens women's health. Attention has been paid on the study of long- non-coding RNA (lncRNA) in breast cancer. However, the specific mechanism remains not clear. METHODS In this study, we explored the role of lncRNA BC069792 in breast cancer. In vitro and in vivo functional experiments were carried out in cell culture and mouse models. High-throughput next-generation sequencing technology and real-time fluorescence quantitative PCR technology were used to evaluate differentially expressed genes and mRNA expression, Western blot and immunohistochemical staining were used to detect protein expression. RNA immunoprecipitation assay and dual-luciferase activity assay were used to evaluate the competing endogenous RNAs (ceRNA), and rescue and mutation experiments were used for verification. RESULTS We found that lncRNA BC069792 was expressed at a low level in breast cancer tissues, and significantly decreased in breast cancer with high pathological grade, lymph node metastasis and high Ki-67 index groups. Moreover, BC069792 inhibited the proliferation, invasion and metastasis of breast cancer cells in vitro and in vivo. Mechanically, BC069792 acts as a molecular sponge to adsorb hsa-miR-658 and hsa-miR-4739, to up-regulate the protein expression of Potassium Voltage-Gated Channel Q4 (KCNQ4), inhibits the activities of JAK2 and p-AKT, and plays a role in inhibiting breast cancer growth. CONCLUSIONS LncRNA BC069792 plays the role of tumor suppressor gene in breast cancer and is a new diagnostic index and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Department of Pathology, The First Clinical Medical College of Weifang Medical University, Weifang people's Hospital, Weifang, 261100, China
| | - Xiaotong Dong
- Department of Pathology, The First Clinical Medical College of Weifang Medical University, Weifang people's Hospital, Weifang, 261100, China
| | - Xiangyu Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250000, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chunsen Li
- Department of Pathology, The First Clinical Medical College of Weifang Medical University, Weifang people's Hospital, Weifang, 261100, China
| | - Yanping Fan
- Department of Pathology, The First Clinical Medical College of Weifang Medical University, Weifang people's Hospital, Weifang, 261100, China.,College of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Pengju Liu
- Department of Economics, Qingdao University, Qingdao, 266061, China
| | - Dawei Yuan
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Xialin Ma
- Department of Pathology, The First Clinical Medical College of Weifang Medical University, Weifang people's Hospital, Weifang, 261100, China
| | - Jingru Wang
- Department of Pathology, The First Clinical Medical College of Weifang Medical University, Weifang people's Hospital, Weifang, 261100, China
| | - Jie Zheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Hongli Li
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250000, China. .,Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Yuan Y, Liu Q, Wu Z, Zhong W, Lin Z, Luo W. TXNIP inhibits the progression of osteosarcoma through DDIT4-mediated mTORC1 suppression. Am J Cancer Res 2022; 12:3760-3779. [PMID: 36119812 PMCID: PMC9442022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in adolescents and children. The pathogenesis of this disease is complex and the mechanisms involved have not been fully elucidated. Thioredoxin-interacting protein (TXNIP), as a member of the α-rhodopsin inhibitory protein family, can combine with thioredoxin to inhibit its antioxidant function. This process inhibits glucose absorption and metabolic rearrangement necessary for the regulation of cellular growth. In recent years, TXNIP has emerged as a new candidate target for tumors. However, the biological function and role of TXNIP in OS remains unclear. This study confirmed the low expression of TXNIP in OS tissues and cells, which was significantly related to the poor survival rate and clinical characteristics of patients with OS. Various cell phenotype experiments have shown that TXNIP inhibits the proliferation, migration, and invasion of OS cells, and promotes their apoptosis. Further studies found that the tumor suppressor effect of TXNIP was mediated by upregulating DNA damage-inducible transcript 4 (DDIT4) and inhibiting the phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) downstream substrate S6. Based on the above, our study explored the key role of TXNIP/DDIT4/mTORC1 suppression as a regulatory axis in the progression of OS, and laid the foundation for precise targeted therapy for OS.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Ziyi Wu
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Wei Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalChangsha, Hunan, P. R. China
| |
Collapse
|
5
|
Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4525778. [PMID: 35464764 PMCID: PMC9023195 DOI: 10.1155/2022/4525778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/27/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.
Collapse
|