1
|
Zhang Z, Ding ZT, Wu CX, Zhang QH, Liang XY, Liang ZC. Identifying resistance molecules in TiO 2 nanoparticle-tolerant strains to facilitate the development of strategies for combating TiO 2 nanoparticle pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117042. [PMID: 39332201 DOI: 10.1016/j.ecoenv.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
The severity of environmental pollution caused by TiO2 nanoparticles (nTiO2) is increasing, highlighting the urgent need for the development of strategies to combat nTiO2 pollution. Insights into resistance molecules from nTiO2-tolerant strains may facilitate such development. In this study, we utilized multi-omics, genetic manipulation, physiological and biochemical experiments to identify relevant resistance molecules in two strains (Physarum polycephalum Z259 and T83) tolerated to mixed-phase nTiO2 (MPnTiO2). We discovered that a competing endogenous RNA (ceRNA) network, comprising one long non-coding RNA (lncRNA), four microRNAs, and nine mRNAs, influenced metabolic rearrangement and was associated with significant resistance in these strains. Additionally, we found that the lncRNA in the ceRNAs network and certain small-weight metabolites associated with the ceRNA exhibited notable mitigation effects not only against MPnTiO2 but also against other types of nTiO2 with broad species applicability (they significantly improved the resistance of several non-nTiO2-tolerant cells/organisms in the laboratory and reduced cell damage of non-nTiO2-tolerant cells/organisms in highly suspected nTiO2-polluted areas of the real world). In summary, this study deepens our understanding of nTiO2-tolerant strains, provides valuable insights into resistance molecules in these strains, and facilitates the development of strategies to combat nTiO2 pollution.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Zhong Tao Ding
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Cheng Xin Wu
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qing Hai Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiu Yi Liang
- College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA
| | - Zhi Cheng Liang
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Al-Hawary SIS, Saleh RO, Taher SG, Ahmed SM, Hjazi A, Yumashev A, Ghildiyal P, Qasim MT, Alawadi A, Ihsan A. Tumor-derived lncRNAs: Behind-the-scenes mediators that modulate the immune system and play a role in cancer pathogenesis. Pathol Res Pract 2024; 254:155123. [PMID: 38277740 DOI: 10.1016/j.prp.2024.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Having been involved in complex cellular regulatory networks and cell-to-cell communications, non-coding RNAs (lncRNAs) have become functional carriers that transmit information between cells and tissues, modulate tumor microenvironments, encourage angiogenesis and invasion, and make tumor cells more resistant to drugs. Immune cells' exosomal lncRNAs may be introduced into tumor cells to influence the tumor's course and the treatment's effectiveness. Research has focused on determining if non-coding RNAs affect many target genes to mediate regulating recipient cells. The tumor microenvironment's immune and cancer cells are influenced by lncRNAs, which may impact a treatment's efficacy. The lncRNA-mediated interaction between cancer cells and immune cells invading the tumor microenvironment has been the subject of numerous recent studies. On the other hand, tumor-derived lncRNAs' control over the immune system has not gotten much attention and is still a relatively new area of study. Tumor-derived lncRNAs are recognized to contribute to tumor immunity, while the exact mechanism is unclear.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Ahmed Alawadi
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq; College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
| | - Ali Ihsan
- College of Technical Engineering, the Islamic University of Babylon, Iraq; Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Medical Laboratory Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
3
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Hu C, Li S, Fu X, Zhao X, Peng J. LncRNA NR2F1-AS1 was involved in azacitidine resistance of THP-1 cells by targeting IGF1 with miR-483-3p. Cytokine 2023; 162:156105. [PMID: 36527891 DOI: 10.1016/j.cyto.2022.156105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The long noncoding RNAs' (lncRNAs) effect on cancer therapy resistance by targeting microRNA (miRNA) in the regulation of drug resistance genes has attracted more and more attention. This study attempted to explore the mechanism of "lncRNA NR2F1-AS1/miR-483-3p/IGF1″ axis in azacitidine resistance of THP-1 cells. METHODS THP-1 cells were treated with azacitidine to construct THP1-Aza cells. Cell number and morphological changes were observed by a microscope. CCK8, flow cytometry and transwell were used to detect cell proliferation, apoptosis, cycle, invasion and migration. The targeting relationships between NR2F1-AS1 and miR-483-3p, IGF1 and miR-483-3p were analyzed by dual-luciferase, respectively. RIP assay was applied to verify the interaction between NR2F1-AS1 and miR-483-3p. The relative mRNA expression levels of miR-483-3p, AKT1, PI3K, NR2F1-AS1 and IGF1 were detected by qRT-PCR. PI3K, p-PI3K, AKT, p-AKT and IGF1 protein expression were detected by western blot. RESULTS Compared with THP-1 cells, NR2F1-AS1 and IGF1 were highly expressed in THP1-Aza cells, and the miR-483-3p expression was significantly decreased in THP1-Aza cells. Knockdown of NR2F1-AS1 increased apoptosis and G1 phase, and reduced cells growth, invasion and migration ability of THP1-Aza cells. Dual-luciferase demonstrated that NR2F1-AS1 could bind to miR-483-3p, and miR-483-3p could bind to IGF1. RIP assay verified the interaction between NR2F1-AS1 and miR-483-3p. Compared with the si-NR2F1-AS1 group, miR-483-3p inhibitor or oe-IGF1 treatment reduced the apoptosis and cell cycle, and increased the cell growth, invasion and migration ability of THP-1-Aza cells. CONCLUSION LncRNA NR2F1-AS1 affects the sensitivity of THP-1 cells to azacitidine resistance by regulating the miR-483-3p/IGF1 axis, which may be a potential target for the treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shujun Li
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xiao Fu
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xielan Zhao
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Xie GB, Chen RB, Lin ZY, Gu GS, Yu JR, Liu ZG, Cui J, Lin LQ, Chen LC. Predicting lncRNA-disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation. Brief Bioinform 2023; 24:6966536. [PMID: 36592062 DOI: 10.1093/bib/bbac595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/03/2023] Open
Abstract
Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process. To address these problems, a new prediction approach, termed SSMF-BLNP, based on organically combining selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP), is proposed in this paper to predict lncRNA-disease associations. In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. The fusion process assigns weights to each initial similarity network and introduces a unit matrix that can reduce noise and compensate for the loss of self-similarity. In BLNP, the initial lncRNA-disease associations are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation. The propagation was then performed on the self-similarity network obtained from SSMF to derive the scoring matrix for predicting the relationships between lncRNAs and diseases. Experimental results showed that SSMF-BLNP performed better than seven other state of-the-art approaches. Furthermore, a case study demonstrated up to 100% and 80% accuracy in 10 lncRNAs associated with hepatocellular carcinoma and 10 lncRNAs associated with renal cell carcinoma, respectively. The source code and datasets used in this paper are available at: https://github.com/RuiBingo/SSMF-BLNP.
Collapse
Affiliation(s)
- Guo-Bo Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Rui-Bin Chen
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhi-Yi Lin
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guo-Sheng Gu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Jun-Rui Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji Cui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lie-Qing Lin
- Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou, 510000, China
| | - Lang-Cheng Chen
- Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou, 510000, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Taheri M, Samsami M. A review on the role of NR2F1-AS1 in the development of cancer. Pathol Res Pract 2022; 240:154210. [PMID: 36410172 DOI: 10.1016/j.prp.2022.154210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
NR2F1-AS1 is a natural antisense transcript with prominent roles in the carcinogenesis. It acts as an oncogene in almost all types of cancers except for cervical and colorectal cancers. It can act as a molecular sponge for miR-17, miR-371a-3p, miR-363, miR-29a-3p, miR-493-5p, miR-190a, miR-140, miR-642a, miR-363, miR-493-5p, miR-483-3p, miR-485-5p, miR-146a-5p, miR-877-5p, miR-338-3 P and miR-423-5p to influence expression of several cancer-related genes. Thus, the sponging role of NR2F1-AS1 is the most appreciated route of its contribution in the carcinogenesis. In addition, NR2F1-AS1 affects activity of IGF-1/IGF-1R/ERK, PI3K/AKT/GSK-3β and Hedgehog pathways. The current narrative review aims at summarization of the results of studies that highlighted the role of NR2F1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
8
|
Yang X, Jiang Z, Li Y, Zhang Y, Han Y, Gao L. Non-coding RNAs regulating epithelial-mesenchymal transition: Research progress in liver disease. Biomed Pharmacother 2022; 150:112972. [PMID: 35447551 DOI: 10.1016/j.biopha.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic liver injury could gradually progress to liver fibrosis, cirrhosis, and even hepatic carcinoma without effective treatment. The massive production and activation of abnormal cell differentiation is vital to the procession of liver diseases. Epithelial-mesenchymal transformation (EMT) is a biological process in which differentiated epithelial cells lose their epithelial characteristics and acquire mesenchymal cell migration capacity. Emerging evidence suggests that EMT not only occurs in the process of hepatocellular carcinogenesis, but also appears in liver cells transforming to myofibroblasts, a core event of liver disease. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are important regulatory factors in EMT, which can regulate target gene expression by binding with RNA single-stranded. Various studies had shown that ncRNA regulation of EMT plays a key role in liver disease development, and many effective ncRNAs have been identified as promising biomarkers for the diagnosis and treatment of liver disease. In this review, we focus on the relationship between the different ncRNAs and EMT as well as the specific molecular mechanism in the liver diseases to enrich the pathological progress of liver diseases and provide reference for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingchun Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
9
|
High level of lncRNA NR2F1-AS1 predict the onset and progression of diabetic retinopathy in type 2 diabetes. Exp Eye Res 2022; 219:109069. [DOI: 10.1016/j.exer.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
|
10
|
Luo D, Liu Y, Yuan S, Bi X, Yang Y, Zhu H, Li Z, Ji L, Yu X. The emerging role of NR2F1-AS1 in the tumorigenesis and progression of human cancer. Pathol Res Pract 2022; 235:153938. [DOI: 10.1016/j.prp.2022.153938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
11
|
Zuo F, Zhang Y, Li J, Yang S, Chen X. Long noncoding RNA NR2F1-AS1 plays a carcinogenic role in gastric cancer by recruiting transcriptional factor SPI1 to upregulate ST8SIA1 expression. Bioengineered 2021; 12:12345-12356. [PMID: 34738863 PMCID: PMC8810033 DOI: 10.1080/21655979.2021.2001168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a highly malignant solid tumor of the digestive tract, which is associated with a high mortality rate. Long non-coding RNA (lncRNA) nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) has been reported to exert a tumor-promoting effect in some types of cancer. The present study aimed to investigate the role of NR2F1-AS1 in GC. The expression levels of NR2F1-AS1 and its potential target gene were measured in GC cell lines. Bioinformatics analysis, an RNA immunoprecipitation assay and a chromatin immunoprecipitation assay were used to determine the binding relationship between NR2F1-AS1 and downstream genes. The effect of NR2F1-AS1 regulatory axis on AGC cell viability, proliferation, migration, invasion and epithelial-mesenchymal transition was evaluated. The results of the present study revealed that the knockdown of NR2F1-AS1 inhibited the proliferation, invasion and migration of GC cells. NR2F1-AS1 also upregulated the expression levels of ST8SIA1 by recruiting transcriptional factor SPI1. Thus, the effects of the knockdown of NR2F1-AS1 on GC cell functions were suggested to occur via regulation of ST8SIA1. In conclusion, the findings of the current study indicated that NR2F1-AS1 may promote the proliferation, invasion and migration of GC cells by recruiting SPI1, to upregulate ST8SIA1 expression. Thus, the regulation of their expression levels may provide a novel direction for the treatment of GC.
Collapse
Affiliation(s)
- Fang Zuo
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong, China
| | - Yong Zhang
- Department of Spleen and Stomach Diseases, Liaocheng Chinese Medicine Hospital, Liaocheng, Shandong, China
| | - Jianting Li
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong, China
| | - Shaoxiang Yang
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong, China
| | - Xiaolu Chen
- Department of Oncology, Jinan Central Hospital, Jinan, Shandong, China
| |
Collapse
|
12
|
Lv J, Zhang S, Liu Y, Li C, Guo T, Zhang S, Li Z, Jiao Z, Sun H, Zhang Y, Xu L. NR2F1-AS1/miR-190a/PHLDB2 Induces the Epithelial-Mesenchymal Transformation Process in Gastric Cancer by Promoting Phosphorylation of AKT3. Front Cell Dev Biol 2021; 9:688949. [PMID: 34746118 PMCID: PMC8569557 DOI: 10.3389/fcell.2021.688949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023] Open
Abstract
The median survival time of patients with advanced gastric cancer (GC) who received radiotherapy and chemotherapy was <1 year. Epithelial-mesenchymal transformation (EMT) gives GC cells the ability to invade, which is an essential biological mechanism in the progression of GC. The long non-coding RNA (lncRNA)-based competitive endogenous RNA (ceRNA) system has been shown to play a key role in the GC-related EMT process. Although the AKT pathway is essential for EMT in GC, the relationship between AKT3 subtypes and EMT in GC is unclear. Here, we evaluated the underlying mechanism of ceRNA involving NR2F1-AS1/miR-190a/PHLDB2 in inducing EMT by promoting the expression and phosphorylation of AKT3. The results of bioinformatics analysis showed that the expression of NR2F1-AS1/miR-190a/PHLDB2 in GC was positively associated with the pathological features, staging, poor prognosis, and EMT process. We performed cell transfection, qRT-PCR, western blot, cell viability assay, TUNEL assay, Transwell assay, cell morphology observation, and double luciferase assay to confirm the regulation of NR2F1-AS1/miR-190a/PHLDB2 and its effect on EMT transformation. Finally, GSEA and GO/KEGG enrichment analysis identified that PI3K/AKT pathway was positively correlated to NR2F1-AS1/miR-190a/PHLDB2 expression. AKT3 knockout cells were co-transfected with PHLDB2-OE, and the findings revealed that AKT3 expression and phosphorylation were essential for the PHLDB2-mediated EMT process. Thus, our results showed that NR2F1-AS1/miR-190a/PHLDB2 promoted the phosphorylation of AKT3 to induce EMT in GC cells. This study provides a comprehensive understanding of the underlying mechanism involved in the EMT process as well as the identification of new EMT markers.
Collapse
Affiliation(s)
- Jinqi Lv
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Simeng Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Tianshu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Shuairan Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zenan Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zihan Jiao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Haina Sun
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| |
Collapse
|
13
|
The Effect and Mechanism of lncRNA NR2F1-As1/miR-493-5p/MAP3K2 Axis in the Progression of Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3881932. [PMID: 34335755 PMCID: PMC8294992 DOI: 10.1155/2021/3881932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Background LncRNA NR2F1-AS1 has been identified as an oncogene in some human tumors, such as breast cancer, nonsmall cell lung cancer, and esophageal squamous cell carcinoma. Nonetheless, whether NR2F1-AS1 is involved in the progression of gastric cancer (GC) remains unknown. Methods The expression patterns of NR2F1-AS1, MAP3K2, and miR-493-5p in GC tissues and cells were detected by RT-qPCR. The protein expression of MAP3K2 was assessed by the Western blotting assay. The MTT assay and flow cytometry were performed to measure cell proliferation and cell apoptosis in GC cells. The transwell assay was adopted to assess cell migration in GC cells. The relationship between NR2F1-AS1, MAP3K2, and miR-493-5p was verified by a dual-luciferase reporter assay. Results The increased NR2F1-AS1 and MAP3K2 expressions were discovered in GC tissues and cells compared with control groups. Knockdown of NR2F1-AS1 and MAP3K2 dramatically suppressed cell proliferation and migration, while it enhanced cell apoptosis in GC cells. In addition, NR2F1-AS1 was found to be a sponge of miR-493-5p, and MAP3K2 was a downstream gene of miR-493-5p. Moreover, the expression of MAP3K2 was notably reduced by miR-493-5p, and NR2F1-AS1 counteracted the inhibition of miR-493-5p. Conclusion Thus, NR2F1-AS1 was verified to regulate GC cell progression by sponging miR-493-5p to upregulate MAP3K2 expression.
Collapse
|