1
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
2
|
Yan M, Zhang X, Zhang B, Geng Z, Xie C, Yang W, Zhang S, Qi Z, Lin T, Ke Q, Li X, Wang S, Quan X. Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy. Eur Radiol 2023; 33:4949-4961. [PMID: 36786905 PMCID: PMC10289921 DOI: 10.1007/s00330-023-09419-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVES The accurate prediction of post-hepatectomy early recurrence in patients with hepatocellular carcinoma (HCC) is crucial for decision-making regarding postoperative adjuvant treatment and monitoring. We aimed to explore the feasibility of deep learning (DL) features derived from gadoxetate disodium (Gd-EOB-DTPA) MRI, qualitative features, and clinical variables for predicting early recurrence. METHODS In this bicentric study, 285 patients with HCC who underwent Gd-EOB-DTPA MRI before resection were divided into training (n = 195) and validation (n = 90) sets. DL features were extracted from contrast-enhanced MRI images using VGGNet-19. Three feature selection methods and five classification methods were combined for DL signature construction. Subsequently, an mp-MR DL signature fused with multiphase DL signatures of contrast-enhanced images was constructed. Univariate and multivariate logistic regression analyses were used to identify early recurrence risk factors including mp-MR DL signature, microvascular invasion (MVI), and tumor number. A DL nomogram was built by incorporating deep features and significant clinical variables to achieve early recurrence prediction. RESULTS MVI (p = 0.039), tumor number (p = 0.001), and mp-MR DL signature (p < 0.001) were independent risk factors for early recurrence. The DL nomogram outperformed the clinical nomogram in the training set (AUC: 0.949 vs. 0.751; p < 0.001) and validation set (AUC: 0.909 vs. 0.715; p = 0.002). Excellent DL nomogram calibration was achieved in both training and validation sets. Decision curve analysis confirmed the clinical usefulness of DL nomogram. CONCLUSION The proposed DL nomogram was superior to the clinical nomogram in predicting early recurrence for HCC patients after hepatectomy. KEY POINTS • Deep learning signature based on Gd-EOB-DTPA MRI was the predominant independent predictor of early recurrence for hepatocellular carcinoma (HCC) after hepatectomy. • Deep learning nomogram based on clinical factors and Gd-EOB-DTPA MRI features is promising for predicting early recurrence of HCC. • Deep learning nomogram outperformed the conventional clinical nomogram in predicting early recurrence.
Collapse
Affiliation(s)
- Meng Yan
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Xiao Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Artificial Intelligence and Clinical Innovation Research, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Zhijun Geng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, People's Republic of China
| | - Chuanmiao Xie
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, People's Republic of China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, No. 1023, Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Zhendong Qi
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Ting Lin
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Qiying Ke
- Medical Imaging Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Airport Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xinming Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| | - Shutong Wang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhong Shan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xianyue Quan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
3
|
Shakir H, Aijaz B, Khan TMR, Hussain M. A deep learning-based cancer survival time classifier for small datasets. Comput Biol Med 2023; 160:106896. [PMID: 37150085 DOI: 10.1016/j.compbiomed.2023.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Cancer survival time prediction using Deep Learning (DL) has been an emerging area of research. However, non-availability of large-sized annotated medical imaging databases affects the training performance of DL models leading to their arguable usage in many clinical applications. In this research work, a neural network model is customized for small sample space to avoid data over-fitting for DL training. A set of prognostic radiomic features is selected through an iterative process using average of multiple dropouts which results in back-propagated gradients with low variance, thus increasing the network learning capability, reliable feature selection and better training over a small database. The proposed classifier is further compared with erasing feature selection method proposed in the literature for improved network training and with other well-known classifiers on small sample size. Achieved results which were statistically validated show efficient and improved classification of cancer survival time into three intervals of 6 months, between 6 months up to 2 years, and above 2 years; and has the potential to aid health care professionals in lung tumor evaluation for timely treatment and patient care.
Collapse
Affiliation(s)
- Hina Shakir
- Department of Software Engineering, Bahria University, 13-National Stadium Road Karachi, 75620, Pakistan.
| | - Bushra Aijaz
- Department of Electrical Engineering, Bahria University, 13-National Stadium Road Karachi, 75620, Pakistan.
| | - Tariq Mairaj Rasool Khan
- Department of Electrical and Power Engineering, Pakistan Navy Engineering College, National University of Science and Technology, Karachi, Pakistan.
| | - Muhammad Hussain
- Department of Electrical Engineering, Bahria University, 13-National Stadium Road Karachi, 75620, Pakistan.
| |
Collapse
|
4
|
Xiu D, Mo Y, Liu C, Hu Y, Wang Y, Zhao Y, Guo T, Cheng K, Huang C, Liu L, Cheng M. Integrative Nomogram of Computed Tomography Radiomics, Clinical, and Tumor Immune Features for Analysis of Disease-Free Survival of NSCLC Patients with Surgery. JOURNAL OF ONCOLOGY 2023; 2023:8607062. [PMID: 36866239 PMCID: PMC9974282 DOI: 10.1155/2023/8607062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 11/25/2022] [Indexed: 02/23/2023]
Abstract
To improve prognosis of cancer patients and determine the integrative value for analysis of disease-free survival prediction, a clinic investigation was performed involving with 146 non-small cell lung cancer (NSCLC) patients (83 men and 73 women; mean age: 60.24 years ± 8.637) with a history of surgery. Their computed tomography (CT) radiomics, clinical records, and tumor immune features were firstly obtained and analyzed in this study. Histology and immunohistochemistry were also performed to establish a multimodal nomogram through the fitting model and cross-validation. Finally, Z test and decision curve analysis (DCA) were performed to evaluate and compare the accuracy and difference of each model. In all, seven radiomics features were selected to construct the radiomics score model. The clinicopathological and immunological factors model, including T stage, N stage, microvascular invasion, smoking quantity, family history of cancer, and immunophenotyping. The C-index of the comprehensive nomogram model on the training set and test set was 0.8766 and 0.8426 respectively, which was better than that of the clinicopathological-radiomics model (Z test, P =0.041<0.05), radiomics model and clinicopathological model (Z test, P =0.013<0.05 and P =0.0097<0.05). Integrative nomogram based on computed tomography radiomics, clinical and immunophenotyping can be served as effective imaging biomarker to predict DFS of hepatocellular carcinoma after surgical resection.
Collapse
Affiliation(s)
- Dianhui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Yan Mo
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co. Ltd., Beijing 100080, China
| | - Chaohui Liu
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co. Ltd., Beijing 100080, China
| | - Yu Hu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Yanjing Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Yiming Zhao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Tiantian Guo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Kailiang Cheng
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Chencui Huang
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co. Ltd., Beijing 100080, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Min Cheng
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Wang Y, Lin X, Sun D. A narrative review of prognosis prediction models for non-small cell lung cancer: what kind of predictors should be selected and how to improve models? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1597. [PMID: 34790803 PMCID: PMC8576716 DOI: 10.21037/atm-21-4733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Objective To discover potential predictors and explore how to build better models by summarizing the existing prognostic prediction models of non-small cell lung cancer (NSCLC). Background Research on clinical prediction models of NSCLC has experienced explosive growth in recent years. As more predictors of prognosis are discovered, the choice of predictors to build models is particularly important, and in the background of more applications of next-generation sequencing technology, gene-related predictors are widely used. As it is more convenient to obtain samples and follow-up data, the prognostic model is preferred by researchers. Methods PubMed and the Cochrane Library were searched using the items “NSCLC”, “prognostic model”, “prognosis prediction”, and “survival prediction” from 1 January 1980 to 5 May 2021. Reference lists from articles were reviewed and relevant articles were identified. Conclusions The performance of gene-related models has not obviously improved. Relative to the innovation and diversity of predictors, it is more important to establish a highly stable model that is convenient for clinical application. Most of the prevalent models are highly biased and referring to PROBAST at the beginning of the study may be able to significantly control the bias. Existing models should be validated in a large external dataset to make a meaningful comparison.
Collapse
Affiliation(s)
- Yuhang Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Daqiang Sun
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Thoracic Surgery, Tianjin Chest Hospital of Nankai University, Tianjin, China
| |
Collapse
|