1
|
Wu Y, Lin B, Xie Z, Huang J, Qiu Y, Chen X, Hong Z, Qiu C. SUMOylation of RAD51 upregulates GOLPH3 expression and promotes cisplatin resistance in colon cancer cells by Sp1 transcriptional activity. Biochem Pharmacol 2025; 236:116888. [PMID: 40127738 DOI: 10.1016/j.bcp.2025.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Platinum-based chemotherapy is a first-line treatment for colon cancer. Previous studies have shown that Golgi phosphoprotein 3 (GOLPH3) overexpression drives platinum resistance in colon cancer and is associated with DNA damage repair (DDR). However, the mechanism by which DDR induces GOLPH3 expression remains unclear. This study investigates how RAD51 recombinase (RAD51) SUMOylation upregulates GOLPH3 expression and promotes platinum resistance in colon cancer. In DDP-resistant colon adenocarcinoma (COAD) cells, Specificity protein 1 (Sp1) and GOLPH3 were overexpressed, while N-myc downstream regulated 1 (NDRG1) was downregulated. Knockdown of Sp1 or GOLPH3 increased NDRG1 expression, inhibited COAD cell proliferation, promoted cell apoptosis, and enhanced cell sensitivity to cisplatin (DDP). Immunohistochemistry (IHC) and bioinformatics analyses of COAD tissues revealed a positive correlation between RAD51, SUMO1 and Sp1 expression. Sp1 was found to increase DDP resistance by transcriptionally activating GOLPH3 expression. RAD51 was SUMOylated by SUMO1 at the K57 site, and this modification decreased COAD cell sensitivity to DDP by enhancing Sp1 transcriptional activity. Furthermore, RAD51 overexpression led to upregulation of GOLPH3 and downregulation of NDRG1, promoting cell proliferation, inhibiting apoptosis, and increasing resistance to DDP. Conversely, the RAD51 mutant did not affect GOLPH3 expression or platinum resistance in vivo and in vitro. In conclusion, RAD51 SUMOylation at the K57 site enhances Sp1 transcriptional activity, thereby reducing colon cancer cell sensitivity to DDP by regulating GOLPH3 and NDRG1 expression. This discovery elucidates the molecular mechanism of DDR-induced GOLPH3 upregulation, offering a new perspective for overcoming DDP resistance in colon cancer.
Collapse
Affiliation(s)
- Yuze Wu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China
| | - Bingchen Lin
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China
| | - Zhiyong Xie
- Department of Emergency, Nan'an Hospital, Quanzhou 362300 Fujian Province, China
| | - Jingshan Huang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China
| | - Yi Qiu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China
| | - Xiaojing Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China
| | - Zhongshi Hong
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China.
| | - Chengzhi Qiu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000 Fujian Province, China.
| |
Collapse
|
2
|
Haghir-Sharif-Zamini Y, Khosravi A, Hassan M, Zarrabi A, Vosough M. c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma. Arch Biochem Biophys 2025; 765:110306. [PMID: 39818348 DOI: 10.1016/j.abb.2025.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required. Epi-drugs, or epigenetic-based medicines, have recently emerged as a promising therapeutic modality. Since the epigenome of the cancer cells is always dysregulated and this is followed by apoptosis-resistance, reprogramming the epigenome of cancer cells by epi-drugs (such as HDAC inhibitors (HDACis), and DNMT inhibitors (DNMTis)) could be an alternative approach to use in concert with established treatment protocols. C-FLIP, an anti-apoptotic protein, and Ku70, a member of the DNA repair system, bind together and make a cytoplasmic complex in certain cancers and induce resistance to apoptosis. Many epi-drugs, such as HDACis, can dissociate this complex through Ku70 acetylation and activate cellular apoptosis. The novel compounds for dissociating this complex could provide an innovative insight into molecular targeted HCC treatments. In this review, we address the innovative therapeutic potential of targeting c-FLIP/Ku70 complex by epi-drugs, particularly HDACis, to overcome apoptosis resistance of HCC cells. This review will cover the mechanisms by which the c-FLIP/Ku70 complex facilitates cancer cell survival, the impact of epigenetic alterations on the complex dissociation, and highlight HDACis potential in combination therapies, biomarker developments and mechanistic overviews. This review highlights c-FLIP ubiquitination and Ku70 acetylation levels as diagnostic and prognostic tools in HCC management.
Collapse
Affiliation(s)
- Yasamin Haghir-Sharif-Zamini
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
4
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Valdez BC, Tsimberidou AM, Yuan B, Baysal MA, Chakraborty A, Andersen CR, Andersson BS. Synergistic Cytotoxicity of Histone Deacetylase and Poly-ADP Ribose Polymerase Inhibitors and Decitabine in Breast and Ovarian Cancer Cells: Implications for Novel Therapeutic Combinations. Int J Mol Sci 2024; 25:9241. [PMID: 39273190 PMCID: PMC11394699 DOI: 10.3390/ijms25179241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48-70%, and Annexin V positivity was 42-59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Clark R. Andersen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
6
|
Teixeira De Oliveira J, Brito Tecchio K, Silva Lopes M, Nunes Andrade S, Iara Maciel De Azambuja Ribeiro R, Varotti FDP, Barbosa De Oliveira R, Henrique Ribeiro Viana G, J Da Silva Vieira Dos Santos V, Vieira Dos Santos F. In vitro evaluation of the selective cytotoxicity and genotoxicity of three synthetic ortho-nitrobenzyl derivatives in human cancer cell lines, with and without metabolic activation. Drug Chem Toxicol 2024; 47:404-415. [PMID: 38949608 DOI: 10.1080/01480545.2023.2184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/18/2023] [Indexed: 03/11/2023]
Abstract
Although the presence of nitro groups in chemicals can be recognized as structural alerts for mutagenicity and carcinogenicity, nitroaromatic compounds have attracted considerable interest as a class of agents that can serve as source of potential new anticancer agents. In the present study, the in vitro cytotoxicity, genotoxicity, and mutagenicity of three synthetic ortho-nitrobenzyl derivatives (named ON-1, ON-2 and ON-3) were evaluated by employing human breast and ovarian cancer cell lines. A series of biological assays was carried out with and without metabolic activation. Complementarily, computational predictions of the pharmacokinetic properties and druglikeness of the compounds were performed in the Swiss ADME platform. The MTT assay showed that the compounds selectively affected selectively the cell viability of cancer cells in comparison with a nontumoral cell line. Additionally, the metabolic activation enhanced cytotoxicity, and the compounds affected cell survival, as demonstrated by the clonogenic assay. The comet assay, the cytokinesis-block micronucleus assay, and the immunofluorescence of the γ-H2AX foci formation assay have that the compounds caused chromosomal damage to the cancer cells, with and without metabolic activation. The results obtained in the present study showed that the compounds assessed were genotoxic and mutagenic, inducing double-strand breaks in the DNA structure. The high selectivity indices observed for the compounds ON-2 and ON-3, especially after metabolic activation with the S9 fraction, must be highlighted. These experimental biological results, as well as the theoretical properties predicted for the compounds have shown that they are promising anticancer candidates to be exploited in additional studies.
Collapse
Affiliation(s)
- Júlia Teixeira De Oliveira
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | - Kimberly Brito Tecchio
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | - Marcela Silva Lopes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silmara Nunes Andrade
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | | | - Fernando De Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | - Renata Barbosa De Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Fabio Vieira Dos Santos
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| |
Collapse
|
7
|
Khan MM, Yalamarty SSK, Rajmalani BA, Filipczak N, Torchilin VP. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol 2024; 197:104351. [PMID: 38615873 DOI: 10.1016/j.critrevonc.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Breast cancer is potentially a lethal disease and a leading cause of death in women. Chemotherapy and radiotherapy are the most frequently used treatment options. Drug resistance in advanced breast cancer limits the therapeutic output of treatment. The leading cause of resistance in breast cancer is endocrine and hormonal imbalance, particularly in triple negative and HER2 positive breast cancers. The efflux of drugs due to p-gp's activity is another leading cause of resistance. Breast cancer resistant protein also contributes significantly. Strategies used to combat resistance include the use of nanoparticles to target drug delivery by co-delivery of chemotherapeutic drugs and genes (siRNA and miRNA) that help to down-regulate genes causing resistance. The siRNA is specific and effectively silences p-gp and other proteins causing resistance. The use of chemosensitizers is also effective in overcoming resistance. Chemo-sensitizers sensitize cancer cells to the effects of chemotherapeutic drugs. Novel anti-neoplastic agents such as antibody-drug conjugates and mesenchymal stem cells are also effective tools used to improve the therapeutic response in breast cancer. Similarly, combination of photo/thermal ablation with chemotherapy can act to overcome breast cancer resistance. In this review, we focus on the mechanism of breast cancer resistance and the nanoparticle-based strategies used to combat resistance in breast cancer.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center of Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Lu M, Billerbeck S. Improving homology-directed repair by small molecule agents for genetic engineering in unconventional yeast?-Learning from the engineering of mammalian systems. Microb Biotechnol 2024; 17:e14398. [PMID: 38376092 PMCID: PMC10878012 DOI: 10.1111/1751-7915.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The ability to precisely edit genomes by deleting or adding genetic information enables the study of biological functions and the building of efficient cell factories. In many unconventional yeasts, such as those promising new hosts for cell factory design but also human pathogenic yeasts and food spoilers, this progress has been limited by the fact that most yeasts favour non-homologous end joining (NHEJ) over homologous recombination (HR) as a DNA repair mechanism, impairing genetic access to these hosts. In mammalian cells, small molecules that either inhibit proteins involved in NHEJ, enhance protein function in HR, or arrest the cell cycle in HR-dominant phases are regarded as promising agents for the simple and transient increase of HR-mediated genome editing without the need for a priori host engineering. Only a few of these chemicals have been applied to the engineering of yeast, although the targeted proteins are mostly conserved, making chemical agents a yet-underexplored area for enhancing yeast engineering. Here, we consolidate knowledge of the available small molecules that have been used to improve HR efficiency in mammalian cells and the few ones that have been used in yeast. We include available high-throughput-compatible NHEJ/HR quantification assays that could be used to screen for and isolate yeast-specific inhibitors.
Collapse
Affiliation(s)
- Min Lu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
9
|
Han Y, Liu M, Wang Z. Key protein identification by integrating protein complex information and multi-biological features. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18191-18206. [PMID: 38052554 DOI: 10.3934/mbe.2023808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Identifying key proteins based on protein-protein interaction networks has emerged as a prominent area of research in bioinformatics. However, current methods exhibit certain limitations, such as the omission of subcellular localization information and the disregard for the impact of topological structure noise on the reliability of key protein identification. Moreover, the influence of proteins outside a complex but interacting with proteins inside the complex on complex participation tends to be overlooked. Addressing these shortcomings, this paper presents a novel method for key protein identification that integrates protein complex information with multiple biological features. This approach offers a comprehensive evaluation of protein importance by considering subcellular localization centrality, topological centrality weighted by gene ontology (GO) similarity and complex participation centrality. Experimental results, including traditional statistical metrics, jackknife methodology metric and key protein overlap or difference, demonstrate that the proposed method not only achieves higher accuracy in identifying key proteins compared to nine classical methods but also exhibits robustness across diverse protein-protein interaction networks.
Collapse
Affiliation(s)
- Yongyin Han
- School of Computer Science and Technology, China University of Mining and Technology, China
- Xuzhou College of Industrial Technology, China
| | - Maolin Liu
- School of Computer Science and Technology, China University of Mining and Technology, China
| | - Zhixiao Wang
- School of Computer Science and Technology, China University of Mining and Technology, China
| |
Collapse
|
10
|
Valdez BC, Nieto Y, Yuan B, Murray D, Andersson BS. HDAC inhibitors suppress protein poly(ADP-ribosyl)ation and DNA repair protein levels and phosphorylation status in hematologic cancer cells: implications for their use in combination with PARP inhibitors and chemotherapeutic drugs. Oncotarget 2022; 13:1122-1135. [PMID: 36243940 PMCID: PMC9564514 DOI: 10.18632/oncotarget.28278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The therapeutic efficacy of histone deacetylase inhibitors (HDACi) for hematologic malignancies and solid tumors is attributed to their ability to remodel chromatin, normalize dysregulated gene expression, and inhibit repair of damaged DNA. Studies on the interactions of HDACi with PARP inhibitors in hematologic cancers are limited, especially when combined with chemotherapeutic agents. Exposure of hematologic cancer cell lines and patient-derived cell samples to various HDACi resulted in a significant caspase-independent inhibition of protein PARylation, mainly catalyzed by PARP1. HDACi affected the expression of PARP1 at the transcription and/or post-translation levels in a cell line-dependent manner. HDACi-mediated inhibition of PARylation correlated with decreased levels and phosphorylation of major proteins involved in DNA repair. Combination of HDAC and PARP1 inhibitors provided synergistic cytotoxicity, which was further enhanced when combined with a chemotherapeutic regimen containing gemcitabine, busulfan and melphalan as observed in lymphoma cell lines. Our results indicate that the anti-tumor efficacy of HDACi is partly due to down-regulation of PARylation, which negatively affects the status of DNA repair proteins. This repair inhibition, combined with the high levels of oxidative and DNA replication stress characteristic of cancer cells, could have conferred these hematologic cancer cells not only with a high sensitivity to HDACi but also with a heightened dependence on PARP and therefore with extreme sensitivity to combined HDACi/PARPi treatment and, by extension, to their combination with conventional DNA-damaging chemotherapeutic agents. The observed synergism of these drugs could have a major significance in improving treatment of these cancers.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Sim W, Lim WM, Hii LW, Leong CO, Mai CW. Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World J Gastroenterol 2022; 28:1934-1945. [PMID: 35664961 PMCID: PMC9150054 DOI: 10.3748/wjg.v28.i18.1934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development. Regardless, it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses, thus allowing continuous tumor growth and development. Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer. Compared with other cancers, pancreatic cancer has a tumor microenvironment that can resist most treatment modalities, including emerging immunotherapy. Sadly, the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients, suggesting that pancreatic cancer has successfully evaded immunomodulation. In this review, we summarize the impact of genetic alteration and epigenetic modification (especially histone deacetylases, HDAC) on immune evasion in pancreatic cancer. HDAC overexpression significantly suppresses tumor suppressor genes, contributing to tumor growth and progression. We review the evidence on HDAC inhibitors in tumor eradication, improving T cells activation, restoring tumor immunogenicity, and modulating programmed death 1 interaction. We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.
Collapse
Affiliation(s)
- Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ling-Wei Hii
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med 2022; 86:101097. [PMID: 35400524 PMCID: PMC9378605 DOI: 10.1016/j.mam.2022.101097] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Protein post-translational modifications (PTMs) profoundly influence protein functions and play crucial roles in essentially all cell biological processes. The diverse realm of PTMs and their crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. The pathological roles of various PTMs are implicated in all aspects of cancer hallmark functions, cancer metabolism and regulation of tumor microenvironment. Study of PTMs has become an important area in cancer research to understand cancer biology and discover novel biomarkers and therapeutic targets. With a limited scope, this review attempts to discuss some PTMs of high frequency with recognized importance in cancer biology, including phosphorylation, acetylation, glycosylation, palmitoylation and ubiquitination, as well as their implications in clinical applications. These protein modifications are among the most abundant PTMs and profoundly implicated in carcinogenesis.
Collapse
|
13
|
DNA Methylation Malleability and Dysregulation in Cancer Progression: Understanding the Role of PARP1. Biomolecules 2022; 12:biom12030417. [PMID: 35327610 PMCID: PMC8946700 DOI: 10.3390/biom12030417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Mammalian genomic DNA methylation represents a key epigenetic modification and its dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-expression patterns makes it the key governing mechanism of epigenetic change to the next generation of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of inheritable diseases, including cancer. We outline recent advancements in understanding how DNA modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation. In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological inhibitors, and their relevance as a combination therapy are highlighted.
Collapse
|