1
|
Fricke-Galindo I, García-Carmona S, Bautista-Becerril B, Pérez-Rubio G, Buendia-Roldan I, Chávez-Galán L, Nava-Quiroz KJ, Alanis-Ponce J, Reséndiz-Hernández JM, Blanco-Aguilar E, Erives-Sedano JI, Méndez-Velasco Y, Osuna-Espinoza GE, Salvador-Hernández F, Segura-Castañeda R, Solano-Candia UN, Falfán-Valencia R. Genetic Variants in Genes Related to Lung Function and Interstitial Lung Diseases Are Associated with Worse Outcomes in Severe COVID-19 and Lung Performance in the Post-COVID-19 Condition. Int J Mol Sci 2025; 26:2046. [PMID: 40076669 PMCID: PMC11900979 DOI: 10.3390/ijms26052046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic variants related to susceptibility to chronic respiratory conditions such as interstitial lung disease (ILD) could share critical pathways in the pathogenesis of COVID-19 and be implicated in COVID-19 outcomes and post-COVID-19. We aimed to identify the participation of genetic variants in lung function and ILD genes in severe COVID-19 outcomes and post-COVID-19 condition. We studied 936 hospitalized patients with COVID-19. The requirement of invasive mechanical ventilation (IMV) and the acute respiratory distress syndrome (ARDS) classification were considered. The mortality was assessed as the in-hospital death. The post-COVID-19 group included 102 patients evaluated for pulmonary function tests four times during the year after discharge. Five variants (FAM13A rs2609255, DSP rs2076295, TOLLIP rs111521887, TERT rs2736100, and THSD4 rs872471) were genotyped using TaqMan assays. A multifactor dimensionality reduction method (MDR) was performed for epistasis estimation. The TERT rs2736100 and THSD4 rs872471 variants were associated with differential risk for ARDS severity (moderate vs. severe, CC + CA, p = 0.044, OR = 0.66, 95% CI = 0.44-0.99; and GG p = 0.034, OR = 2.22, 95% CI = 1.04-4.72, respectively). These variants and FAM13A rs2609255 were also related to pulmonary function post-COVID-19. The MDR analysis showed differential epistasis and correlation of the genetic variants included in this study. The well-known variants in recognized genes related to pulmonary function worsening and interstitial disorders are related to the severity and mortality of COVID-19 and lung performance in the post-COVID-19 condition.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Juan M. Reséndiz-Hernández
- Laboratorio Clínico, Centro Especializado de Atención a Personas con Discapacidad Visual, Instituto de Salud del Estado de México, Naucalpan 53000, Mexico State, Mexico;
| | - Esther Blanco-Aguilar
- Facultad de Medicina Benemérita, Universidad Autónoma de Puebla, Puebla de Zaragoza 72420, Puebla, Mexico;
| | - Jessica I. Erives-Sedano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Yashohara Méndez-Velasco
- Unidad Académica Profesional Chimalhuacán, Universidad Autónoma del Estado de México, Nezahualcóyotl 56353, Mexico State, Mexico;
| | - Grecia E. Osuna-Espinoza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico;
| | - Fidel Salvador-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Rubén Segura-Castañeda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Hermosillo Sonora 83000, Sonora, Mexico;
| | - Uriel N. Solano-Candia
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| |
Collapse
|
2
|
Zhang Y, Gai X, Chu H, Qu J, Li L, Sun Y. Prevalence of non-smoking chronic obstructive pulmonary disease and its risk factors in China: a systematic review and meta-analysis. BMC Public Health 2024; 24:3010. [PMID: 39478509 PMCID: PMC11526722 DOI: 10.1186/s12889-024-20170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a prevalent chronic disorder in China, impacting a significant proportion of individuals aged > 40 years. In China, the prevalence of and risk factors for COPD among non-smokers remain largely unexplored. In this study, we aimed to determine the prevalence of COPD in non-smokers within the Chinese population and identify potential risk factors associated with COPD in non-smokers. METHODS Web of Science, PubMed, Embase, Chinese WanFang, Chinese China National Knowledge Infrastructure, and Weipu databases from inception to August 5, 2024, were searched. Studies reporting the percentage of never-smokers among those diagnosed with COPD and investigations exploring the risk factors associated with COPD in never-smokers in China were examined. Summary proportions and odds ratios (OR), along with their corresponding 95% confidence intervals (95% CI), were measured. RESULTS In total, 112 investigations with 491,812 participants were included. The percentage of never-smokers in people with COPD was 41.1% (95% CI: 37.5-44.6%). The prevalence of never-smokers among males diagnosed with COPD was 22.3% (95% CI: 18.8-25.7%), which differed from that among women (81.3%, 95% CI: 75.3-87.2%). The results showed an association between the utilization of biomass fuel and the occurrence of COPD in never-smokers (OR: 1.25, 95% CI: 1.06-1.44). Among never-smokers, the data showed a close association between being underweight (OR: 1.89, 95% CI: 1.78-2.00), tuberculosis history (OR: 1.71, 95% CI: 1.53-1.88) and COPD. Never-smokers living in rural areas or those with low educational status were more susceptible to COPD. CONCLUSION This review confirmed the highly different proportions of never-smokers among male and female patients with COPD. TRIAL REGISTRATION PROSPERO: CRD42023420786.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Hongling Chu
- Research Centre of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Jingge Qu
- Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Liang Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Accordini S, Lando V, Calciano L, Bombieri C, Malerba G, Margagliotti A, Minelli C, Potts J, van der Plaat DA, Olivieri M. SNPs in FAM13Aand IL2RBgenes are associated with FeNO in adult subjects with asthma. J Breath Res 2023; 18:016001. [PMID: 37733009 DOI: 10.1088/1752-7163/acfbf1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Nitric oxide has different roles in asthma as both an endogenous modulator of airway function and a pro-inflammatory mediator. Fractional exhaled nitric oxide (FeNO) is a reliable, quantitative, non-invasive, simple, and safe biomarker for assessing airways inflammation in asthma. Previous genome-wide and genetic association studies have shown that different genes and single nucleotide polymorphisms (SNPs) are linked to FeNO. We aimed at identifying SNPs in candidate genes or gene regions that are associated with FeNO in asthma. We evaluated 264 asthma cases (median age 42.8 years, female 47.7%) who had been identified in the general adult population within the Gene Environment Interactions in Respiratory Diseases survey in Verona (Italy; 2008-2010). Two hundred and twenty-one tag-SNPs, which are representative of 50 candidate genes, were genotyped by a custom GoldenGate Genotyping Assay. A two-step association analysis was performed without assuming ana priorigenetic model: step (1) a machine learning technique [gradient boosting machine (GBM)] was used to select the 15 SNPs with the highest variable importance measure; step (2) the GBM-selected SNPs were jointly tested in a linear regression model with natural log-transformed FeNO as the normally distributed outcome and with age, sex, and the SNPs as covariates. We replicated our results within an independent sample of 296 patients from the European Community Respiratory Health Survey III. We found that SNP rs987314 in family with sequence similarity 13 member A (FAM13A) and SNP rs3218258 in interleukin 2 receptor subunit beta (IL2RB) gene regions are significantly associated with FeNO in adult subjects with asthma. These genes are involved in different mechanisms that affect smooth muscle constriction and endothelial barrier function responses (FAM13A), or in immune response processes (IL2RB). Our findings contribute to the current knowledge on FeNO in asthma by identifying two novel SNPs associated with this biomarker of airways inflammation.
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Valentina Lando
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Cristina Bombieri
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Giovanni Malerba
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Antonino Margagliotti
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, United Kingdom
| | - James Potts
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, United Kingdom
| | - Diana A van der Plaat
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, United Kingdom
| | - Mario Olivieri
- Retired Professor of Occupational Medicine, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Pham KH, Tran NTC, Tran HD, Ngo TH, Tran VD, Ly HHV, Pham NTN, Nguyen T, Nguyen BH, Nguyen KT. Single Nucleotide Polymorphisms of FAM13A Gene in Chronic Obstructive Pulmonary Disease-A Case Control Study in Vietnam. Adv Respir Med 2023; 91:268-277. [PMID: 37366807 DOI: 10.3390/arm91030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND In 2018, GOLD addressed the issues of genotypes associated with risk factors for COPD. The genome-wide association study (GWAS) demonstrated an association between COPD and several genetic variants of single nucleotide polymorphisms (SNPs) of the FAM13A gene with the risk of COPD. OBJECTIVE To study the single nucleotide polymorphisms rs2869967 and rs17014601 of the FAM13A gene in chronic obstructive pulmonary disease. Subjects and research methods: 80 subjects diagnosed with COPD and 80 subjects determined not to have COPD according to GOLD 2020 criteria; the subjects were clinically examined, interviewed, and identified as possessing single nucleotide polymorphisms using the sanger sequencing method on whole blood samples. RESULTS The male/female ratio of the patient group and the control group was 79/1 and 39/1, respectively. The percentages of C and T alleles of rs2869967 in COPD patients were 50.6% and 49.4%, respectively. The percentages of C and T alleles of rs17014601 in COPD patients were 31.9% and 68.1%, respectively. At rs17014601, the ratio values of alleles T and C in the disease group and the control group were markedly different, making them statistically reliable (p = 0.031). The rate of CT genotype in the group of patients was considerably higher than that of the control group. The TT homozygous genotype had a lower risk of COPD compared with the other genotypes in the dominant model (ORTT/(CC + CT) = 0.441; CI95% = 0.233-0.833); this difference was statistically significant (p = 0.012). CONCLUSIONS With rs17014601, it is characteristic that the frequency of the T allele appears more than the C allele, and the CT heterozygous phenotype accounts for the highest proportion in rs17014601 and rs2869967 recorded in COPD patients. There is an association between the genetic variant of the SNP FAM13A-rs17014601 and the risk of COPD.
Collapse
Affiliation(s)
- Khanh Hoang Pham
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Nhung Thi Cam Tran
- Department of Anesthesiology and Resuscitation, Hoan My Cuu Long Hospital, Can Tho City 900000, Vietnam
| | - Hung Do Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Toan Hoang Ngo
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Van De Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Hung Huynh Vinh Ly
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Nga Thi Ngoc Pham
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Thang Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Binh Huy Nguyen
- Physiology Department, Hanoi Medical University, Ha Noi 100000, Vietnam
| | - Kien Trung Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| |
Collapse
|
5
|
Sun S, Shen Y, Feng J. Association of toll-like receptors polymorphisms with COPD risk in Chinese population. Front Genet 2022; 13:955810. [PMID: 36386838 PMCID: PMC9643488 DOI: 10.3389/fgene.2022.955810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/14/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Previous studies have reported that the Toll-like receptors (TLRs) are related with the progress of chronic obstructive pulmonary disease (COPD). We aimed to explore the association of TLRs single nucleotide polymorphisms (SNPs) and COPD risk. Methods: 170 COPD patients and 181 healthy controls were enrolled in this case-control study. MassARRAY platform was used for genotyping seven tagging SNPs (TLR2: rs3804100, rs4696480, rs3804099; TLR3: rs3775290, rs3775291, rs5743305; TLR9: rs352140) of TLRs. The correlations between the SNPs and COPD risk were determined using logistic regression. Results: We found that the rs3775291 of TLR3 significant decreased the risk of COPD (TT versus CC: non-adjusted OR = 0.329, 95% CI = 0.123-0.879, p = 0.027). In the genetic models analysis, the rs3775291 was associated with a decreased effect of COPD based on the recessive model (TT versus CC/CT: non-adjusted OR = 0.377, 95% CI = 0.144-0.988 p = 0.047). The rs4696480 of TLR2 gene was associated with a decreased risk of COPD after adjustment by age and gender (TA versus AA: adjusted OR = 0.606, 95% CI = 0.376-0.975, p = 0.039). Conclusion: Our study showed that genetic variants in TLRs were associated with risk of COPD. The rs3775291 and rs4696480 may act as a potential biomarker for predicting the risk of COPD in Chinese population.
Collapse
Affiliation(s)
- Shulei Sun
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuehao Shen
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Liang C, Wang G, Raza SHA, Wang X, Li B, Zhang W, Zan L. FAM13A promotes proliferation of bovine preadipocytes by targeting Hypoxia-Inducible factor-1 signaling pathway. Adipocyte 2021; 10:546-557. [PMID: 34672860 PMCID: PMC8547837 DOI: 10.1080/21623945.2021.1986327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The family with sequence similarity 13 member A (FAM13A) gene has been discovered in recent years and is related to metabolism. In this study, the function of FAM13A in precursor adipocyte proliferation in Qinchuan cattle was investigated using fluorescence quantitative polymerase chain reaction (PCR), western blotting, 5-ethynyl-2'-deoxyuridine staining, and other tests. FAM13A promoted precursor adipocyte proliferation. To determine the pathway FAM13A was involved in, transcriptome sequencing, fluorescence quantitative PCR, western blotting, and other tests were used, which identified the hypoxia inducible factor-1 (HIF-1) signalling pathway. Finally, cobalt chloride, a chemical mimic of hypoxia, was used to treat precursor adipocytes. mRNA and protein levels of FAM13A were significantly increased after hypoxia. Thus, FAM13A promoted bovine precursor adipocyte proliferation by inhibiting the HIF-1 signalling pathway, whereas chemically induced hypoxia negatively regulated FAM13A expression, regulating cell proliferation.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Guohua Wang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | | | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
7
|
Guzmán-Vargas J, Ambrocio-Ortiz E, Pérez-Rubio G, Ponce-Gallegos MA, Hernández-Zenteno RDJ, Mejía M, Ramírez-Venegas A, Buendia-Roldan I, Falfán-Valencia R. Differential Genomic Profile in TERT, DSP, and FAM13A Between COPD Patients With Emphysema, IPF, and CPFE Syndrome. Front Med (Lausanne) 2021; 8:725144. [PMID: 34490311 PMCID: PMC8416604 DOI: 10.3389/fmed.2021.725144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Genetic association studies have identified single nucleotide polymorphisms (SNPs) associated with lasting lung diseases such as Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF), as well as the simultaneous presentation, known as Combined Pulmonary Fibrosis and Emphysema (CPFE) Syndrome. It is unknown if these diseases share genetic variants previously described in an independent way. This study aims to identify common or differential variants between COPD, IPF, and CPFE. Materials and methods: The association analysis was carried out through a case-control design in a Mexican mestizo population (n = 828); three patients' groups were included: COPD smokers (COPD-S, n = 178), IPF patients (n = 93), and CPFE patients (n = 16). Also, two comparison groups were analyzed: smokers without COPD (SWOC, n = 367) and healthy subjects belonging to the Mexican Pulmonary Aging Cohort (PAC, n = 174). Five SNPs in four genes previously associated to interstitial and obstructive diseases were selected: rs2609255 (FAM13A), rs2736100 (TERT), rs2076295 (DSP) rs5743890, and rs111521887 (TOLLIP). Genotyping was performed by qPCR using predesigned Taqman probes. Results: In comparing IPF vs. PAC, significant differences were found in the frequency of the rs260955 G allele associated with the IPF risk (OR = 1.68, p = 0.01). Also, the genotypes, GG of rs260955 (OR = 2.86, p = 0.01) and TT of rs2076295 (OR = 1.79, p = 0.03) were associated with an increased risk of IPF; after adjusting by covariables, only the rs260955 G allele remain significant (p = 0.01). For the CPFE vs. PAC comparison, an increased CPFE risk was identified since there is a difference in the rs2736100 C allele (OR = 4.02, p < 0.01; adjusted p < 0.01). For COPD-S, the rs2609255 TG genotype was associated with increased COPD risk after adjusting by covariables. Conclusion: The rs2736100 C allele is associated with decreased IPF risk and confers an increased risk for CPFE. Also, the rs2076295 TT genotype is associated with increased IPF risk, while the GG genotype is associated with CFPE susceptibility. The rs2609255 G allele and GG genotype are associated with IPF susceptibility, while the TG genotype is present in patients with emphysema.
Collapse
Affiliation(s)
- Javier Guzmán-Vargas
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | - Mayra Mejía
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
8
|
Zhu J, Wang F, Feng X, Li B, Ma L, Zhang J. Family with sequence similarity 13 member A mediates TGF-β1-induced EMT in small airway epithelium of patients with chronic obstructive pulmonary disease. Respir Res 2021; 22:192. [PMID: 34210319 PMCID: PMC8247231 DOI: 10.1186/s12931-021-01783-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background To explore the role of family with sequence similarity 13 member A (FAM13A) in TGF-β1-induced EMT in the small airway epithelium of patients with chronic obstructive pulmonary disease (COPD). Methods Small airway wall thickness and protein levels of airway remodeling markers, EMT markers, TGF-β1, and FAM13A were measured in lung tissue samples from COPD and non-COPD patients. The correlations of FAM13A expression with COPD severity and EMT marker expression were evaluated. Gain- and loss-of-function assays were performed to explore the functions of FAM13A in cell proliferation, motility, and TGF-β1-induced EMT marker alterations in human bronchial epithelial cell line BEAS-2B. Results Independent of smoking status, lung tissue samples from COPD patients exhibited significantly increased small airway thickness and collagen fiber deposition, along with enhanced protein levels of remodeling markers (collagen I, fibronectin, and MMP-9), mesenchymal markers (α-SMA, vimentin, and N-cadherin), TGF-β1, and FAM13A, compared with those from non-COPD patients. FAM13A expression negatively correlated with FEV1% and PO2 in COPD patients. In small airway epithelium, FAM13A expression negatively correlated with E-cadherin protein levels and positively correlated with vimentin protein levels. In BEAS-2B cells, TGF-β1 dose-dependently upregulated FAM13A protein levels. FAM13A overexpression significantly promoted cell proliferation and motility in BEAS-2B cells, whereas FAM13A silencing showed contrasting results. Furthermore, FAM13A knockdown partially reversed TGF-β1-induced EMT marker protein alterations in BEAS-2B cells. Conclusions FAM13A upregulation is associated with TGF-β1-induced EMT in the small airway epithelium of COPD patients independent of smoking status, serving as a potential therapeutic target for anti-EMT therapy in COPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01783-z.
Collapse
Affiliation(s)
- Jinyuan Zhu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Faxuan Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xueyan Feng
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Beibei Li
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Jin Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
9
|
Lu H, Yang Y, Chen X, Wu C, Zhao J, Feng Q, Zhou X, Xu D, Li Q, Niu H, He P, Liu J, Yao H, Ding Y. Influence of the CYP2J2 Gene Polymorphisms on Chronic Obstructive Pulmonary Disease Risk in the Chinese Han Population. Arch Bronconeumol 2020; 56:697-703. [PMID: 32224017 DOI: 10.1016/j.arbres.2019.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cytochrome P450 (CYP) 2J2 is a major enzyme that controls epoxyeicosatrienoic acids biosynthesis, which may play a role in chronic obstructive pulmonary disease (COPD) development. In this study, we aimed to assess the influence of CYP2J2 polymorphisms with COPD susceptibility. MATERIAL AND METHODS A case-control study enrolled 313 COPD cases and 508 controls was to investigate the association between CYP2J2 polymorphisms and COPD risk. Agena MassARRAY platform was used to genotype CYP2J2 polymorphisms. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the association between CYP2J2 polymorphisms and COPD risk. RESULTS We observed rs11207535 (homozygote: OR=0.08, 95%CI=0.01-0.96, p=0.047; recessive: OR=0.08, 95%CI=0.01-0.94, p=0.044), rs10889159 (homozygote: OR=0.08, 95%CI=0.01-0.92, p=0.043; recessive: OR=0.08, 95%CI=0.01-0.90, p=0.040) and rs1155002 (heterozygote: OR=1.63, 95%CI=1.13-2.36, p=0.009; dominant: OR=1.64, 95%CI=1.15-2.35, p=0.006; additive: OR=1.45, 95%CI=1.09-1.92, p=0.011) were significantly associated with COPD risk. Allelic tests showed T allele of rs2280274 was related to a decreased risk of COPD and T allele of rs1155002 was associated with an increased COPD risk. Stratified analyses indicated the effects of CYP2J2 polymorphisms and COPD risk were dependent on gender and smoking status (p<0.05). Additionally, two haplotypes (Ars11207535Crs10889159Trs1155002 and Ars11207535Crs10889159Crs1155002) significantly decreased COPD risk. CONCLUSION It suggested CYP2J2 polymorphisms were associated with COPD susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Hui Lu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570102, Hainan, China
| | - Yixiu Yang
- Department of General Practice, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Xianghong Chen
- Department of General Practice, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Cibing Wu
- Hainan General Hospital, University of South China, Haikou 570311, Hainan, China
| | - Jie Zhao
- Hainan General Hospital, University of South China, Haikou 570311, Hainan, China
| | - Qiong Feng
- Hainan General Hospital, University of South China, Haikou 570311, Hainan, China
| | - Xiaoli Zhou
- Department of General Practice, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Dongchuan Xu
- Department of Emergency, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Quanni Li
- Department of General Practice, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Huan Niu
- Department of Emergency, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Ping He
- Department of Emergency, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Jianfang Liu
- Hainan General Hospital, University of South China, Haikou 570311, Hainan, China
| | - Hongxia Yao
- Department of General Practice, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan General Hospital, Haikou 570311, Hainan, China.
| |
Collapse
|
10
|
Liang C, Li A, Raza SHA, Khan R, Wang X, Wang S, Wang G, Zhang Y, Zan L. The Molecular Characteristics of the FAM13A Gene and the Role of Transcription Factors ACSL1 and ASCL2 in Its Core Promoter Region. Genes (Basel) 2019; 10:genes10120981. [PMID: 31795267 PMCID: PMC6947481 DOI: 10.3390/genes10120981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
The gene family with sequence similarity 13 member A (FAM13A) has recently been identified as a marker gene in insulin sensitivity and lipolysis. In this study, we first analyzed the expression patterns of this gene in different tissues of adult cattle and then constructed a phylogenetic tree based on the FAM13A amino acid sequence. This showed that subcutaneous adipose tissue had the highest expression in all tissues except lung tissue. Then we summarized the gene structure. The promoter region sequence of the gene was successfully amplified, and the -241/+54 region has been identified as the core promoter region. The core promoter region was determined by the unidirectional deletion of the 5' flanking promoter region of the FAM13A gene. Based on the bioinformatics analysis, we examined the dual luciferase activity of the vector constructed by the mutation site, and the transcription factors ACSL1 and ASCL2 were found as transcriptional regulators of FAM13A. Moreover, electrophoretic mobility shift assay (EMSA) further validated the regulatory role of ACSL1 and ASCL2 in the regulation of FAM13A. ACSL1 and ASCL2 were finally identified as activating transcription factors. Our results provide a basis for the function of the FAM13A gene in bovine adipocytes in order to improve the deposition of fat deposition in beef cattle muscle.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Guohua Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-2987-091-923
| |
Collapse
|
11
|
Yu Y, Mao L, Lu X, Yuan W, Chen Y, Jiang L, Ding L, Sang L, Xu Z, Tian T, Wu S, Zhuang X, Chu M. Functional Variant in 3'UTR of FAM13A Is Potentially Associated with Susceptibility and Survival of Lung Squamous Carcinoma. DNA Cell Biol 2019; 38:1269-1277. [PMID: 31539274 DOI: 10.1089/dna.2019.4892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
FAM13A is associated with aging lung disease (primarily chronic obstructive pulmonary disorder and pulmonary fibrosis) and shows stable expression throughout lung development. However, a few systematic studies of FAM13A have been conducted to assess the pathogenesis of lung cancer, particularly susceptibility. We predicted that single-nucleotide polymorphisms (SNPs) in FAM13A may be associated with lung cancer development. We systematically selected five functional SNPs (rs2602120, rs3017895, rs9224, rs7657817, and rs3756050) and genotyped them with the Genesky proprietary improved Multiligase Detection Reaction multiplex SNP genotyping system in a case-control study of 626 lung cancer cases and 667 cancer-free controls. The functional effects of FAM13A and specific miRNAs (miRNA-22-5p and miRNA-1301-3p) were evaluated based on The Cancer Genome Atlas database. We found that rs9224 in the 3' untranslated region (UTR) of FAM13A was potentially associated with an increased risk of lung squamous carcinoma (LUSQ) (additive model: odds ratio = 1.47, 95% confidence interval = 1.04-2.07, p = 0.028). In addition, the results of expression quantitative trait loci analysis suggested that the rs9224 polymorphism affects the expression of FAM13A (p = 0.050) and miRNA-22-5p (p = 0.031) in LUSQ. Further, survival analysis indicated decreased overall survival in the presence of the variant alleles of rs9224 (p = 0.048). The present results indicate that variant genotypes of rs9224 in the FAM13A 3'UTR may modify LUSQ susceptibility by affecting the binding of miRNA-22-5p and predict a poor prognosis of patients with LUSQ.
Collapse
Affiliation(s)
- Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liping Mao
- Department of Oncology, The Sixth People's Hospital of Nantong, Nantong, China
| | - Xiao Lu
- Department of Oncology, Changshu No.1 People's Hospital, Suzhou, China
| | - Weiyan Yuan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yujia Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liying Jiang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Ding
- Internal Medicine, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, China
| | - Lingli Sang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhengcheng Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xun Zhuang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|