1
|
Liu Q, Wang Y, Cao X, Zhang S, Xie J. IL-6 and CD4 +/CD8 + are Important Indicators for Predicting Prognosis in Elderly AECOPD Patients: A Retrospective Study. J Inflamm Res 2025; 18:2601-2611. [PMID: 40008081 PMCID: PMC11853116 DOI: 10.2147/jir.s496735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose Evaluating the role of IL-6 and CD4+/CD8+ in predicting the prognosis of elderly patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Patients and Methods This study retrospectively enrolled 413 elderly patients who were hospitalized for AECOPD between January 2019 and December 2021. Patients were divided into event and non-event groups based on whether they were readmitted or died due to AECOPD during 18 months of follow-up. The associations between IL-6 and CD4+/CD8+ with adverse events were assessed using Cox proportional hazards regression models, Kaplan-Meier survival analysis, and restricted cubic spline (RCS) models. Additionally, subgroup analyses were conducted to evaluate the stability of these associations, and ROC curves were used to assess the predictive ability of IL-6 combined with CD4+/CD8+ for adverse events. Results A total of 413 patients were included in the study, with 218 experiencing adverse events. Patients with high levels of IL-6 and low levels of CD4+/CD8+ had a higher risk of adverse events. There was a non-linear relationship between IL-6 and CD4+/CD8+ with adverse events (p<0.05). Subgroup analyses further confirmed the robustness of this association. ROC curve analysis indicated that combining IL-6 with CD4+/CD8+ significantly improved the predictive value for adverse events. Conclusion There is a non-linear relationship between IL-6 and CD4+/CD8+ and adverse events in elderly patients with AECOPD. Combining IL-6 with CD4+/CD8+ ratios significantly enhances the predictive value for adverse events.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Yanhui Wang
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Xueshuai Cao
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Shan Zhang
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Juan Xie
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Xue T, Dong F, Gao J, Zhong X. Identification of related-genes of T cells in lung tissue of chronic obstructive pulmonary disease based on bioinformatics and experimental validation. Sci Rep 2024; 14:12042. [PMID: 38802460 PMCID: PMC11130218 DOI: 10.1038/s41598-024-62758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
T cells are one of the main cell types shaping the immune microenvironment in chronic obstructive pulmonary disease (COPD). They persist andplay cytotoxic roles. The purpose of this study aimed to explore the potential related-genes of T cells in lung tissue of COPD. Chip data GSE38974 and single_celldata GSE196638 were downloaded from the GEO database. Difference analyses and WGCNA of GSE38974 were performed to identify DEGs and the modules most associated with the COPD phenotype. Various cell subsets were obtained by GSE196638, and DEGs of T cells were further identified. GO, GSEA and KEGG enrichment analyses were conducted to explore the biological functions and regulatory signaling pathways of the DEGs and DEGs of T cells. The intersection of the DEGs, module genes and DEGs of T cells was assessed to acquire related-genes of T cells. The mRNA and protein expression levels of related-genes ofT cells were verified in lung tissue of mouse with emphysema model. Based on GSE38974 difference analysis, 3811 DEGs were obtained. The results of WGCNA showed that the red module had the highest correlation coefficient with the COPD phenotype. GSE196638 analysis identified 124 DEGs of T cells. The GO, GSEAand KEGG enrichment analyses mainly identified genes involved in I-kappaB kinase/NF-kappaB signaling, receptor signaling pathway via STAT, regulationof CD4-positive cells, regulation of T-helper cell differentiation, chemokine signaling pathway, Toll-likereceptor signaling pathway, CD8-positive cells, alpha-beta T cell differentiation, MAPK signaling pathway and Th17 cell differentiation. The DEGs, genes of the red module and DEGs of T cells were overlapped to acquire FOXO1 and DDX17. The results of RT-qPCR and Western Blot indicate that the mRNA and protein expression levels of FOXO1 and DDX17 in lung tissue of emphysema mice were significantly higher compared with those in air-exposed mice. FOXO1 as well as DDX17 may be related-genesof T cells in lung tissue of patient with COPD, and their participation in the biological processes of different signaling pathways may inspire further COPD research.
Collapse
Affiliation(s)
- Ting Xue
- Department of Resipiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fei Dong
- Department of Resipiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinglin Gao
- Department of Rheumatism and Immunology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaoning Zhong
- Department of Resipiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Liu Y, Zhu T, Wang J, Cheng Y, Zeng Q, You Z, Dai G. Analysis of network expression and immune infiltration of disulfidptosis-related genes in chronic obstructive pulmonary disease. Immun Inflamm Dis 2024; 12:e1231. [PMID: 38578019 PMCID: PMC10996381 DOI: 10.1002/iid3.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a globally prevalent respiratory disease, and programmed cell death plays a pivotal role in the development of COPD. Disulfidptosis is a newly discovered type of cell death that may be associated with the progression of COPD. However, the expression and role of disulfidptosis-related genes (DRGs) in COPD remain unclear. METHODS The expression of DRGs was identified by analyzing RNA sequencing (RNA-seq) data in COPD. Further, COPD patients were classified into two subtypes by unsupervised cluster analysis to reveal their differences in gene expression and immune infiltration. Meanwhile, hub genes associated with disulfidptosis were screened by weighted gene co-expression network analysis. Subsequently, the hub genes were validated experimentally in cells and animals. In addition, we screened potential therapeutic drugs through the hub genes. RESULTS We identified two distinct molecular clusters and observed significant differences in immune cell populations between them. In addition, we screened nine hub genes, and experimental validation showed that CDC71, DOHH, PDAP1, and SLC25A39 were significantly upregulated in cigarette smoke-induced COPD mouse lung tissues and bronchial epithelial cells (BEAS-2B) treated with cigarette smoke extract. Finally, we predicted 10 potential small molecule drugs such as Atovaquone, Taurocholic acid, Latamoxef, and Methotrexate. CONCLUSION We highlighted the strong association between COPD and disulfidptosis, with DRGs demonstrating a discriminative capacity for COPD. Additionally, the expression of certain novel genes, including CDC71, DOHH, PDAP1, and SLC25A39, is linked to COPD and may aid in the diagnosis and assessment of this condition.
Collapse
Affiliation(s)
- Yanqun Liu
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Tao Zhu
- Respiratory Medicine and Critical Care MedicineSuining Central HospitalSuiningChina
| | - Juan Wang
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Yan Cheng
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Qiang Zeng
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangChina
| | - Guangming Dai
- Department of GeriatricsFirst People's Hospital of Suining CitySuiningChina
| |
Collapse
|
4
|
Xiao K, Zhao F, Xie W, Ding J, Gong X, OuYang C, Le AP. Mechanism of TLR4 mediated immune effect in transfusion-induced acute lung injury based on Slit2/Robo4 signaling pathway. Transfus Apher Sci 2023; 62:103500. [PMID: 35853810 DOI: 10.1016/j.transci.2022.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is the infusion of blood or blood system. OBJECTIVE To explore the mechanism of TLR4-mediated T cell immune effect in TRALI. METHODS In this animal study, a mouse model of LPS-induced TRALI was established. Sixty adult C57/BL6 mice (wild-type, WT) were randomly divided into 5 groups: 1) normal WT type, 2) LPS control group of WT type lipopolysaccharide, 3) WT type TRALI group (LPS + MHC-I mAb), 4) (TLR4 antibody) lipopolysaccharide LPS control group, 5) (TLR4 antibody) TRALI group (LPS + MHC-I mAb). Mice were injected with LPS (0.1 mg/kg) and MHC-I mAb (2 mg/kg) into the tail vein. H&E staining was performed to detect pathological features. The myeloperoxidase (MPO) activity and the level of inflammatory cytokines in lung tissue homogenate supernatant were measured. Blood, spleen single-cell suspension, and bronchoalveolar lavage fluid were collected to detect the ratio of Treg and Th17 cells by flow cytometry. RT-PCR and WB were used to detect mRNA or protein expression. RESULTS TLR4 mAb treatment alleviated the pathogenesis of LPS-induced TRALI in vivo, the MPO activity, and the level of proinflammatory factors in lung tissues. TLR4 exerted its function by changing of Treg/Th17 ratio via the SLIT2/ROBO4 signaling pathway and downregulating CDH5 and SETSIP. CONCLUSION TLR4 mediates immune response in the LPS-induced TRALI model through the SLIT2/ROBO4 signaling pathway.
Collapse
Affiliation(s)
- Kun Xiao
- Department of Transfusion Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fei Zhao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - WenJie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jian Ding
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - XiaoAn Gong
- Department of Urology, Fengcheng People's Hospital, Fengcheng 331100, China
| | - ChenSi OuYang
- Department of Urology, Yichun People's Hospital, Yichun 336000, China
| | - Ai Ping Le
- Department of Transfusion Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
5
|
Li DY, Chen L, Miao SY, Zhou M, Wu JH, Sun SW, Liu LL, Qi C, Xiong XZ. Inducible Costimulator-C-X-C Motif Chemokine Receptor 3 Signaling is Involved in Chronic Obstructive Pulmonary Disease Pathogenesis. Int J Chron Obstruct Pulmon Dis 2022; 17:1847-1861. [PMID: 35991707 PMCID: PMC9386059 DOI: 10.2147/copd.s371801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background The role of inducible costimulator (ICOS) signaling in chronic obstructive pulmonary disease (COPD) has not been fully elucidated. Methods We compared the percentages of ICOS+ T cells and ICOS+ regulatory T (Treg) cells in CD4+ T cells and CD4+CD25+FOXP3+ Tregs, respectively, in the peripheral blood of smokers with or without COPD to those in healthy controls. We further characterized their phenotypes using flow cytometry. To investigate the influence of ICOS signaling on C-X-C motif chemokine receptor 3 (CXCR3) expression in COPD, we evaluated the expression levels of ICOS and CXCR3 in vivo and in vitro. Results ICOS expression was elevated on peripheral CD4+ T cells and CD4+ Tregs of COPD patients, which positively correlated with the severity of lung function impairment in patients with stable COPD (SCOPD), but not in patients with acute exacerbation of COPD (AECOPD). ICOS+CD4+ Tregs in patients with SCOPD expressed higher levels of coinhibitors, programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT), than ICOS−CD4+ Tregs, whereas ICOS+CD4+ T cells mostly exhibited a central memory (CD45RA−CCR7+) or effector memory (CD45RA−CCR7−) phenotype, ensuring their superior potential to respond potently and quickly to pathogen invasion. Furthermore, increased percentages of CXCR3+CD4+ T cells and CXCR3+CD4+ Tregs were observed in the peripheral blood of patients with SCOPD, and the expression level of CXCR3 was higher in ICOS+CD4+ T cells than in ICOS−CD4+ T cells. The percentage of CXCR3+CD4+ T cells was even higher in the bronchoalveolar lavage fluid than in matched peripheral blood in SCOPD group. Lastly, in vitro experiments showed that ICOS induced CXCR3 expression on CD4+ T cells. Conclusions ICOS signaling is upregulated in COPD, which induces CXCR3 expression. This may contribute to increased numbers of CXCR3+ Th1 cells in the lungs of patients with COPD, causing inflammation and tissue damage.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Department of Critical Care Medicine, General Hospital of Pingmei Shenma Medical Group, Pingdingshan, 467000, People's Republic of China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Lan-Lan Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chang Qi
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
6
|
Brajer-Luftmann B, Kaczmarek M, Nowicka A, Stelmach-Mardas M, Wyrzykiewicz M, Yasar S, Piorunek T, Sikora J, Batura-Gabryel H. Regulatory T cells, damage-associated molecular patterns, and myeloid-derived suppressor cells in bronchoalveolar lavage fluid interlinked with chronic obstructive pulmonary disease severity: An observational study. Medicine (Baltimore) 2022; 101:e29208. [PMID: 35687771 PMCID: PMC9276103 DOI: 10.1097/md.0000000000029208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
The role of regulatory T cells (Tregs), damage-associated molecular patterns (DAMPs), and myeloid-derived suppressor cells (MDSCs) in the mechanism of innate and adaptive immune responses in chronic obstructive pulmonary disease (COPD) is not well understood.Evaluating the presence of Tregs in the bronchoalveolar lavage fluid (BALF) and peripheral blood in patients with COPD, and assessment of the relationship between Tregs, MDSCs, and DAMPs as factors activating innate and adaptive immune responses. Description of the association between immune and clinical parameters in COPD.Thirty-one patients with COPD were enrolled. Clinical parameters (forced expiratory volume in one second [FEV1], forced vital capacity, total lung capacity [TLC], diffusion capacity of carbon monoxide, and B-BMI, O-obstruction, D-dyspnea, E-exercise [BODE]) were assessed. Tregs and MDSCs were investigated in the BALF and blood using monoclonal antibodies directly conjugated with fluorochromes in flow cytometry. The levels of defensin (DEF2), galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-9 (Gal-9), heat shock protein-27 (HSP27), and surfactant protein A were assessed via sandwich enzyme-linked immunosorbent assay.The percentage of Tregs was significantly higher in the blood than in the BALF, in contrast to the mean fluorescence intensity of forkhead box P3 (FoxP3). Significant associations were observed between Tregs and HSP27 (r = 0.39), Gal-1 (r = 0.55), Gal-9 (r = -0.46), and MDSCs (r = -0.50), and between FoxP3 and Gal-1 (r = -0.42), Gal-3 (r = -0.39), and MDSCs (r = -0.43). Tregs and clinical parameters, including FEV1%pred (r = 0.39), residual volume (RV)%pred (r = -0.56), TLC%pred (r = -0.55), RV/TLC (r = -0.50), arterial oxygen saturation (r = -0.38), and arterial oxygen pressure (r = -0.39) were significantly correlated. FoxP3 was significantly interlinked with RV/TLC (r = -0.52), arterial oxygen pressure (r = 0.42), and BODE index (r = -0.57).The interaction between innate and adaptive immune responses in patients with COPD was confirmed. The expression of Tregs in BALF may have prognostic value in patients with COPD. The conversion of immune responses to clinical parameters appears to be associated with disease severity.
Collapse
Affiliation(s)
- Beata Brajer-Luftmann
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 Street, Poznan, Poland
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 Street, Poznan, Poland
| | - Agata Nowicka
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Marta Stelmach-Mardas
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Magdalena Wyrzykiewicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, Poznan, Poland
| | - Senan Yasar
- The Christ Hospital Heart and Vascular Center, The Carl and Edyth Lindner Center for Research and Education, Cincinnati, OH
| | - Tomasz Piorunek
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Jan Sikora
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, Poznan, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| |
Collapse
|
7
|
Zhang L, Nie X, Luo Z, Wei B, Teng G. The Role of Human Leukocyte Antigen-DR in Regulatory T Cells in Patients with Virus-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Med Sci Monit 2021; 27:e928051. [PMID: 33651771 PMCID: PMC7936470 DOI: 10.12659/msm.928051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background This study assessed the role of different immune phenotypes of T cells in virus-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Material/Methods The study involved 103 participants, including individuals with virus-induced AECOPD (n=32), non-virus-induced AECOPD (n=31), and stable COPD (n=20) and individuals who were healthy smokers (n=20). The immune phenotypes of T cells in peripheral blood were evaluated via flow cytometry analysis, and the differences were analyzed. Results Patients with virus-induced AECOPD (virus group) had a higher COPD assessment test score on admission than those in the group with non-virus-induced AECOPD (nonvirus group; 25.6±3.8 vs 21.9±4.8, P=0.045). A lower CD4+ human leukocyte antigen-DR (HLA-DR)+ frequency was found in the peripheral blood of the virus group compared with the nonvirus group (2.2 vs 4.2, P=0.015), and the frequency of CD4+ CD25high CD127low HLA-DR+ in CD4+ in the virus group was lower than in the nonvirus group (1.1 vs 3.6, P=0.011). The CD3+, CD4+, CD8+, CD4+ central memory T cell, CD4+ effector memory T cell (Tem), CD4+ end-stage T cell, and CD8+ Tem levels in lymphocytes of peripheral blood were lower in exacerbation groups relative to those in the stable COPD and healthy smoking groups, but similar between exacerbation groups. Similar frequencies and levels of T cells between different stagings of COPD were also identified. Conclusions The expression of HLA-DR on the cell surface of CD4+ regulatory T cells (Tregs) was lower in the peripheral blood of patients with virus-induced AECOPD. The expression of HLA-DR in CD4+ Tregs suggested the effect of respiratory viruses on adaptive immunity of patients with AECOPD to some extent.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China (mainland)
| | - Xiuhong Nie
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China (mainland)
| | - Zhiming Luo
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China (mainland)
| | - Bing Wei
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China (mainland)
| | - Guojie Teng
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
8
|
Liu S, Liu M, Dong L. The clinical value of lncRNA MALAT1 and its targets miR-125b, miR-133, miR-146a, and miR-203 for predicting disease progression in chronic obstructive pulmonary disease patients. J Clin Lab Anal 2020; 34:e23410. [PMID: 32583510 PMCID: PMC7521228 DOI: 10.1002/jcla.23410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023] Open
Abstract
Objective The study aimed to explore the correlations of long non‐coding RNA MALAT1 (lncRNA MALAT1) and its targets microRNA (miR)‐125b, miR‐133, miR‐146a, and miR‐203 with acute exacerbation risk, inflammation, and disease severity of chronic obstructive pulmonary disease (COPD). Methods Plasma samples were obtained from 120 acute exacerbation COPD (AECOPD) patients, 120 stable COPD patients, and 120 healthy controls (HCs). RT‐qPCR was conducted to detect lncRNA MALAT1 expression and its target miRNAs, and ELISA was performed to detect the inflammatory cytokines. Results LncRNA MALAT1 was highest in AECOPD patients followed by stable COPD patients and then HCs, which distinguished AECOPD patients from HCs (AUC: 0.969, 95% CI: 0.951‐0.987) and stable COPD patients (AUC: 0.846, 95% CI: 0.798‐0.894). Furthermore, lncRNA MALAT1 positively correlated with GOLD stage in both AECOPD and stable COPD patients. Regarding inflammatory cytokines, lncRNA MALAT1 positively correlated with tumor necrosis factor‐α (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, IL‐17, and IL‐23 in both AECOPD and stable COPD patients. Besides, lncRNA MALAT1 negatively correlated with miR‐125b, miR‐146a, and miR‐203 in AECOPD patients and reversely correlated with miR‐125b and miR‐146a in stable COPD patients. Notably, miR‐125b, miR‐133, miR‐146a, and miR‐203 were the lowest in AECOPD patients, followed by stable COPD patients, and then HCs; miR‐125b, miR‐133, miR‐146a, and miR‐203 negatively correlated with inflammation and GOLD stage in AECOPD and stable COPD patients. Conclusion LncRNA MALAT1 exhibits clinical implications in acute exacerbation risk prediction and management of COPD via the inner‐correlation with its targets miR‐125b, miR‐146a, and miR‐203.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Liu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ, Xu F. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother 2020; 125:109946. [DOI: 10.1016/j.biopha.2020.109946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
|