1
|
Pan M, Zou Y, Wei G, Zhang C, Zhang K, Guo H, Xiong W. Moderate-intensity physical activity reduces the role of serum PFAS on COPD: A cross-sectional analysis with NHANES data. PLoS One 2024; 19:e0308148. [PMID: 39110698 PMCID: PMC11305543 DOI: 10.1371/journal.pone.0308148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has emerged as a leading cause of chronic disease morbidity and mortality globally, posing a substantial public health challenge. Perfluoroalkyl substances (PFAS) are synthetic chemicals known for their high stability and durability. Research has examined their potential link to decreased lung function. Physical activity (PA) has been identified as one of the primary modalities of the non-pharmacological treatment of COPD. METHODS To investigate the relationship between PFAS and COPD, and whether physical activity could reduce the risk of COPD caused by PFAS exposure, we used data from the NHANES 2013-2018, a cross-sectional study. Logistic regression analysis was used to examine the associations between PFAS and COPD in adult populations, and their associations in different PA types. RESULTS We finally included 4857 participants in the analysis, and found that Sm-PFOS (OR: 1.250), PFOA (OR: 1.398) and n-PFOA (OR: 1.354) were closely related to COPD; After stratified by gender, age and smoking, the results showed that Sm-PFOA (OR: 1.312) was related to COPD in female adult, and PFOA (OR: 1.398) and n-PFOA (OR: 1.354) were associated with COPD in male adults; The associations of Sm-PFOS (OR: 1.280), PFOA (OR: 1.481) and n-PFOA (OR: 1.424)with COPD tended to be stronger and more consistent in over 50 years old adults; Sm-PFOS was related to COPD in current smoker (OR: 1.408), and PFOA was related to COPD in former smoker (OR: 1.487); Besides, in moderate-intensity PA group, there were no associations of Sm-PFOS, PFOA and n-PFOA with COPD stratified by gender, age and smoking. CONCLUSION PFAS exposure may increase the risk of developing COPD, but regular moderate-intensity physical activity can protect individuals from evolving to the disease. However, longitudinal studies are needed to support these preliminary findings.
Collapse
Affiliation(s)
- Manyi Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Caoxu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Department of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang Y, Chai L, Chen Y, Liu J, Wang Q, Zhang Q, Qiu Y, Li D, Chen H, Shen N, Shi X, Wang J, Xie X, Li M. Quantitative CT parameters correlate with lung function in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Front Surg 2023; 9:1066031. [PMID: 36684267 PMCID: PMC9845891 DOI: 10.3389/fsurg.2022.1066031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 01/06/2023] Open
Abstract
Objective This study aimed to analyze the correlation between quantitative computed tomography (CT) parameters and airflow obstruction in patients with COPD. Methods PubMed, Embase, Cochrane and Web of Knowledge were searched by two investigators from inception to July 2022, using a combination of pertinent items to discover articles that investigated the relationship between CT measurements and lung function parameters in patients with COPD. Five reviewers independently extracted data, and evaluated it for quality and bias. The correlation coefficient was calculated, and heterogeneity was explored. The following CT measurements were extracted: percentage of lung attenuation area <-950 Hounsfield Units (HU), mean lung density, percentage of airway wall area, air trapping index, and airway wall thickness. Two airflow obstruction parameters were extracted: forced expiratory volume in the first second as a percentage of prediction (FEV1%pred) and FEV1 divided by forced expiratory volume lung capacity. Results A total of 141 studies (25,214 participants) were identified, which 64 (6,341 participants) were suitable for our meta-analysis. Results from our analysis demonstrated that there was a significant correlation between quantitative CT parameters and lung function. The absolute pooled correlation coefficients ranged from 0.26 (95% CI, 0.18 to 0.33) to 0.70 (95% CI, 0.65 to 0.75) for inspiratory CT and 0.56 (95% CI, 0.51 to 0.60) to 0.74 (95% CI, 0.68 to 0.80) for expiratory CT. Conclusions Results from this analysis demonstrated that quantitative CT parameters are significantly correlated with lung function in patients with COPD. With recent advances in chest CT, we can evaluate morphological features in the lungs that cannot be obtained by other clinical indices, such as pulmonary function tests. Therefore, CT can provide a quantitative method to advance the development and testing of new interventions and therapies for patients with COPD.
Collapse
|
3
|
Tan LC, Yang WJ, Fu WP, Su P, Shu JK, Dai LM. 1H-NMR-based metabolic profiling of healthy individuals and high-resolution CT-classified phenotypes of COPD with treatment of tiotropium bromide. Int J Chron Obstruct Pulmon Dis 2018; 13:2985-2997. [PMID: 30310274 PMCID: PMC6166752 DOI: 10.2147/copd.s173264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Heterogeneity of COPD results in different therapeutic effects for different patients receiving the same treatment. COPD patients need to be individually treated according to their own characteristics. The purpose of this study was to explore the differences in different CT phenotypic COPD by molecular metabolites through the use of metabolomics. Methods According to the characteristics of CT imaging, 42 COPD patients were grouped into phenotype E (n=20) or phenotype M (n=24). Each COPD patient received tiotropium bromide powder for inhalation for a therapeutic period of 3 months. All subjects were assigned into phenotype E in pre-therapy (EB, n=20), phenotype E in post-therapy (EA, n=20), phenotype M in pre-therapy (MB, n=22), phenotype M in post-therapy (MA, n=22), or normal control (N, n=24). The method of metabolomics based on 1H nuclear magnetic resonance (1H-NMR) was used to compare the changes in serum metabolites between COPD patients and normal controls and between different phenotypes of COPD patients in pre- and post-therapy. Results Patients with COPD phenotype E responded better to tiotropium bromide than patients with COPD phenotype M in terms of pulmonary function and COPD assessment test scores. There were differences in metabolites in COPD patients vs normal control people. Differences were also observed between different COPD phenotypic patients receiving the treatment in comparison with those who did not receive treatment. The changes of metabolites involved lactate, phenylalanine, fructose, glycine, asparagine, citric acid, pyruvic acid, proline, acetone, ornithine, lipid, pyridoxine, maltose, betaine, lipoprotein, and so on. These identified metabolites covered the metabolic pathways of amino acids, carbohydrates, lipids, genetic materials, and vitamin. Conclusion The efficacy of tiotropium bromide on COPD phenotype E is better than that of phenotype M. Metabolites detected by 1H-NMR metabolomics have potentialities of differentiation of COPD and healthy people, discrimination of different COPD phenotypes, and giving insight into the individualized treatment of COPD.
Collapse
Affiliation(s)
- Li-Chuan Tan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| | - Wen-Jie Yang
- Department of Respiratory, Baoshan People's Hospital, Baoshan 678000, People's Republic of China
| | - Wei-Ping Fu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| | - Ping Su
- Department of Respiratory, Baoshan People's Hospital, Baoshan 678000, People's Republic of China
| | - Jing-Kui Shu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| | - Lu-Ming Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| |
Collapse
|
4
|
Xie M, Wang W, Dou S, Cui L, Xiao W. Quantitative computed tomography measurements of emphysema for diagnosing asthma-chronic obstructive pulmonary disease overlap syndrome. Int J Chron Obstruct Pulmon Dis 2016; 11:953-61. [PMID: 27226711 PMCID: PMC4866743 DOI: 10.2147/copd.s104484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The diagnostic criteria of asthma–COPD overlap syndrome (ACOS) are controversial. Emphysema is characteristic of COPD and usually does not exist in typical asthma patients. Emphysema in patients with asthma suggests the coexistence of COPD. Quantitative computed tomography (CT) allows repeated evaluation of emphysema noninvasively. We investigated the value of quantitative CT measurements of emphysema in the diagnosis of ACOS. Methods This study included 404 participants; 151 asthma patients, 125 COPD patients, and 128 normal control subjects. All the participants underwent pulmonary function tests and a high-resolution CT scan. Emphysema measurements were taken with an Airway Inspector software. The asthma patients were divided into high and low emphysema index (EI) groups based on the percentage of low attenuation areas less than −950 Hounsfield units. The characteristics of asthma patients with high EI were compared with those having low EI or COPD. Results The normal value of percentage of low attenuation areas less than −950 Hounsfield units in Chinese aged >40 years was 2.79%±2.37%. COPD patients indicated more severe emphysema and more upper-zone-predominant distribution of emphysema than asthma patients or controls. Thirty-two (21.2%) of the 151 asthma patients had high EI. Compared with asthma patients with low EI, those with high EI were significantly older, more likely to be male, had more pack-years of smoking, had more upper-zone-predominant distribution of emphysema, and had greater airflow limitation. There were no significant differences in sex ratios, pack-years of smoking, airflow limitation, or emphysema distribution between asthma patients with high EI and COPD patients. A greater number of acute exacerbations were seen in asthma patients with high EI compared with those with low EI or COPD. Conclusion Asthma patients with high EI fulfill the features of ACOS, as described in the Global Initiative for Asthma and Global Initiative for Chronic Obstructive Lung Disease guidelines. Quantitative CT measurements of emphysema may help in diagnosing ACOS.
Collapse
Affiliation(s)
- Mengshuang Xie
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Wei Wang
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Shuang Dou
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Liwei Cui
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Wei Xiao
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
5
|
Chen X, Liu K, Wang Z, Zhu Y, Zhao Y, Kong H, Xie W, Wang H. Computed tomography measurement of pulmonary artery for diagnosis of COPD and its comorbidity pulmonary hypertension. Int J Chron Obstruct Pulmon Dis 2015; 10:2525-33. [PMID: 26604739 PMCID: PMC4655902 DOI: 10.2147/copd.s94211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Computed tomography (CT) is widely used for evaluation of lung diseases. To evaluate the value of CT measurement of pulmonary artery for diagnosis of chronic obstructive pulmonary disease (COPD) and its comorbidity pulmonary hypertension (PH), we retrospectively reviewed the CT of 221 patients with COPD and 115 control patients without cardiovascular or lung disease. Patients with COPD were divided into PH (COPD-PH) and non-PH according to systolic pulmonary artery pressure. Main pulmonary artery (MPA), right pulmonary artery (RPA) and left pulmonary artery branches, and ascending aorta (AAo) and descending aorta (DAo) diameters were measured. Meanwhile, the ratios of MPA/AAo and MPA/DAo were calculated. MPA, RPA, and left pulmonary artery diameters were significantly larger in COPD than those in the controls, and this augment was more obvious in COPD-PH. AAo and DAo diameters did not vary obviously between groups, while MPA/AAo and MAP/DAo increased significantly in COPD and PH. MPA could be helpful for COPD diagnosis (MPA diameter ≥27.5 mm, sensitivity 54%, and specificity 80%), and RPA could be applied for COPD-PH diagnosis (RPA diameter ≥23.4 mm, sensitivity 67%, and specificity 76%). There was a marked correlation between MPA/DAo and systolic pulmonary artery pressure (r=0.594, P<0.001). Therefore, chest CT could be a simple and effective modality for diagnostic evaluation of COPD and its comorbidity, PH.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Kouying Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhiyue Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yinsu Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Weiping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|