1
|
Reddy R, Gaiwak V, Goda JS, Teni T. 'Nelfinavir sensitizes a clinically relevant chemo-radioresistant cervical cancer in-vitro model by targeting the AKT-USP15/USP11-HPV16 E6/E7 axis. Biochem Biophys Rep 2025; 42:101987. [PMID: 40242402 PMCID: PMC12002845 DOI: 10.1016/j.bbrep.2025.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Resistance to standard therapies is a major challenge in managing cervical cancer, often leading to systemic relapse. This study aimed to develop an in-vitro model of chemo-radioresistant cervical cancer that mimics clinical conditions and also explore the therapeutic potential of the repurposed drug nelfinavir, an HIV protease inhibitor. HPV16-positive SiHa cervical cancer cells were subjected to concurrent cisplatin and ionizing radiation, to simulate the clinical treatment regimen for locally advanced cervical cancer. The resulting chemo-radioresistant subline exhibited increased IC50-value, D0 dose, and a higher Resistance Index compared to parent cells, indicating resistance development. Notably, elevated HPV16 E6/E7 expression in resistant sublines suggested a role for HPV16 in resistance acquisition. Treatment with nelfinavir significantly reduced the IC50-value and D0 dose in resistant cells. Additionally, exposure to nelfinavir or AKT inhibitor IV showed significant decrease in AKT, USP15, USP11 and HPV16 E6/E7 proteins. Furthermore, siRNA mediated knockdown of USP15 and USP11 in resistant cells resulted in significant reduction of HPV16 E6 and E7 oncoproteins respectively. Thus, mechanistically nelfinavir sensitized resistant cervical cancer cells by inhibiting the AKT-USP15/USP11-HPV16 E6/E7 pathway. Overall, this study successfully established a chemo-radioresistant SiHa cell model, providing a platform for investigating resistance mechanisms. It also highlights nelfinavir's potential as a therapeutic agent in overcoming chemo-radioresistance in cervical cancer.
Collapse
Affiliation(s)
- Reshma Reddy
- Teni Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Vagmi Gaiwak
- Teni Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Xiang H, Sun J, Kong L, Wang Y, Qiu X, Zeng J, Li G, He J. NDUFA8 promotes cell viability and inhibits ferroptosis and cisplatin sensitivity by stabilizing Fe-S clusters in cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04237-1. [PMID: 40335672 DOI: 10.1007/s00210-025-04237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Cervical cancer (CC) ranks among the primary causes of cancer fatalities in women, with cisplatin (DDP) resistance significantly impacting clinical outcomes. NADH dehydrogenase (ubiquinone) FA8 (NDUFA8) is significantly upregulated in CC tissues and correlates with lower survival rates, but its role in cisplatin sensitivity in CC is still unclear. NDUFA8 silencing inhibited CC cell viability, promoted ferroptosis, evidenced by increased Fe2+ and lipid ROS levels, along with decreased levels of ATP and reduced activities of complex I, aconitase (ACO), and xanthine oxidase (XO). However, overexpression of NDUFA8 promoted CC cell viability, inhibited ferroptosis, and increased levels of ATP and activities of complex I, ACO, and XO in ferric ammonium citrate (FAC) or rotenone-treated CC cells. NDUFA8 expression showed a negative correlation with the DDP therapy response in CC tissues and cell lines. However, in CC tissues, NDUFA8 expression was positively associated with ACO and XO activities. In in vivo experiments, the overexpression of NDUFA8 diminished the anti-tumor effects of DDP, which was counteracted by FAC. NDUFA8 promotes cell viability and inhibits ferroptosis and DDP sensitivity by stabilizing Fe-S clusters in CC.
Collapse
Affiliation(s)
- Huaguo Xiang
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China.
| | - Junfang Sun
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| | - Lingyue Kong
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| | - Yingzhen Wang
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| | - Xiaorou Qiu
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| | - Jinting Zeng
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| | - Guo Li
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| | - Jiehong He
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, 81 Defeng Road, Fuyong Street, Shenzhen, 518103, China
| |
Collapse
|
3
|
Eswaran S, Mascarenhas R, Kabekkodu SP. The ester derivative Palmitoylcarnitine abrogates cervical cancer cell survival by enhancing lipotoxicity and mitochondrial dysfunction. Cell Commun Signal 2025; 23:213. [PMID: 40319292 PMCID: PMC12048960 DOI: 10.1186/s12964-025-02218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND In cervical cancer (CC), Double C2 Like Domain Beta (DOC2B) functions as a metastatic suppressor. The present study aims to determine whether ectopic expression of DOC2B causes global metabolomic changes in extracellular vesicles (EVs) and corresponds with its tumor suppressive properties. METHODS Using a retroviral method, we first ectopically expressed DOC2B in SiHa cells, which do not normally express DOC2B. RESULTS We observed that ectopically expressed DOC2B significantly altered the global metabolite profile of EVs. Metabolomics identified significant enrichment of palmitoylcarnitine (PC) in EVs upon ectopic expression of DOC2B. We identified that SiHa and HeLa cells exhibited greater cytotoxicity to PC than gingival fibroblast, HaCaT, Cal27, and MCF7. PC treatment reduced the growth, proliferation, and migration of SiHa and HeLa cells, via increasing apoptosis and decreasing S-Phase cells. PC treatment resulted in morphological alterations, decreased length and number of filopodia, and expression of proteins related to cell cycle progression, proliferation, and the epithelial-to-mesenchymal transition. Further, PC treatment caused mitochondrial morphological changes, increased mitochondrial membrane potential, and decreased mtDNA content. The decreased GSH activity, glucose consumption rate, and lactate production upon PC treatment suggest that PC can induce metabolic reprogramming in CC cells. Increased oxidative stress, calcium overload, lipid droplet accumulation, mitochondrial lipotoxicity, and mitophagy suggest that PC can cause mitochondrial dysfunction. N-acetyl cysteine (NAC) treatment reversed the cytotoxic effect of PC, via decreasing lipid peroxidation rate and increasing GSH activity. PC treatment enhanced the cytotoxic effect of cisplatin in CC. CONCLUSION DOC2B restoration or the use of PC may be employed as a novel therapeutic approach for CC.
Collapse
Affiliation(s)
- Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Roshan Mascarenhas
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Newcastle University Medicine Malaysia (NUMed), 1, Jalan Sarjana 1, Kota Ilmu, Educity@Iskandar, Iskandar Puteri, Johor, 79200, Malaysia
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Yin Q, Sun B, Qi X, Wu C, Li M, Wang B, Xu Y, Li S, Huang L, Chen B, Qi S. Anticancer activity of Momordica charantia-derived extracellular vesicle-like particle against cervical cancer. Tissue Cell 2025; 95:102897. [PMID: 40252569 DOI: 10.1016/j.tice.2025.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
AIM To investigate the function and possible mechanisms of Momordica charantia-derived extracellular vesicle-like particle (MC-EVLP) in cervical cancer in vitro and in vivo. METHODS The half-maximal inhibitory concentration (IC50) of MC-EVLP in HeLa and C33A cells were calculated. In this study, colony formation, BrdU staining, cell migration, cell apoptosis, TUNEL staining, malondialdehyde, glutathione and ferrous iron levels, cell viability, and PCNA, CyclinD1, N-cadherin, Vimentin, E-cadherin, matrix metalloproteinase 9, Bcl-2, Bax, p-Akt, GPX4, ACSL4, and transferrin receptor levels were evaluated. In a HeLa cell line xenograft tumor model, the effects of MC-EVLP on the tumor growth rate and volume and the levels of Ki67 and N-cadherin were also evaluated. RESULTS The IC50 values of MC-EVLP were determined to be 59 µg/ml in HeLa cells and 68 µg/ml in C33A cells. MC-EVLP significantly reduced colony formation, the percentage of BrdU-positive cells, and the levels of the proliferative markers PCNA and Cyclin D1 in both cell lines. Additionally, MC-EVLP inhibited cell migration and decreased N-cadherin, vimentin, and matrix metalloproteinase 9 levels. Apoptosis was increased, as evidenced by an increased apoptosis rate, an increased ratio of TUNEL-positive cells, a reduced Bcl-2/Bax ratio, and decreased p-Akt levels. Moreover, MC-EVLP increased lipid peroxidation, downregulated glutathione peroxidase 4 expression, and significantly increased the expression of ACSL4 and transferrin receptor, with Fer-1 partially reversing these effects. In vivo, the intraperitoneal injection of MC-EVLP significantly suppressed tumor growth and decreased the expression of Ki-67 and N-cadherin. CONCLUSION MC-EVLP demonstrated considerable cytotoxic effects on cervical cancer. They promote apoptosis by activating the Bcl-2/Bax/p-Akt pathway and induce ferroptosis by upregulating GPX4 and iron-mediated mechanisms. These findings suggest that MC-EVLP have potential as anticancer agents.
Collapse
Affiliation(s)
- Qilong Yin
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China; Pharmacology College, Xuzhou Medical University, Xuzhou, China.
| | - Bin Sun
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China; Pharmacology College, Xuzhou Medical University, Xuzhou, China.
| | - Xin Qi
- Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China.
| | - Chunyi Wu
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China.
| | - Ming Li
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China.
| | - Bin Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China.
| | - Yinhai Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China.
| | - Shibao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China.
| | - Linyan Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China.
| | - Buze Chen
- Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou 221002, China.
| | - Suhua Qi
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou 221004, China; Pharmacology College, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Wang Z, Cheng L, Li G, Cheng H. Epithelial and macrophage cell interaction in cervical cancer through single-cell RNA-sequencing and spatial analysis. Front Immunol 2025; 16:1537785. [PMID: 40270962 PMCID: PMC12014682 DOI: 10.3389/fimmu.2025.1537785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Background Cervical cancer (CC) is a major global health issue, ranking sixth in cancer-related mortality. The tumor microenvironment (TME) plays a crucial role in tumor growth. This study explored the cellular composition and immunological landscape of CC using various genomic data sources. Methods Data from the Cancer Genome Atlas and Gene Expression Omnibus were analyzed, including single-cell RNA sequencing, spatial transcriptome analysis, and survival data. Gene set variation analysis (GSVA) identified pathways in CD8+ cells, macrophages, and epithelial cells. Immunohistochemistry assessed marker expression in CC and normal tissues. Tumor immune dysfunction and exclusion (TIDE) scores differentiated high- and low-macrophage groups. Cell-cell communication analyses highlighted interactions between macrophages and epithelial cells. Results Macrophage markers correlated with overall survival (OS) and disease-free survival (DFS). Epithelial cell subgroups 1 and 4, along with CD8+ T cells, were associated with OS. TIDE scores varied between groups. Specific ligand-receptor interactions were found between macrophages and epithelial cell subgroup 1. Triptolide was effective in epithelial cell subgroup 1, while memantine was more effective in macrophages. Conclusion Epithelial-macrophage interactions in the TME are crucial for CC progression and treatment, offering a potential immunotherapeutic strategy.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Pediatric Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Long Cheng
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guanghui Li
- Department of Vascular Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huiyan Cheng
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Custódio Dias Duarte B, Ribeiro Queiroz F, Percínio Costa Á, Borges de Melo Neto A, Pereira de Souza Melo C, de Oliveira Salles PG, de Jesus Jeremias W, Lima Bertarini PL, Rodrigues do Amaral L, da Conceição Braga L, de Souza Gomes M, Lopes da Silva Filho A. Upregulation of long non-coding RNA ENSG00000267838 is related to the high risk of progression and non-response to chemoradiotherapy treatment for cervical cancer. Noncoding RNA Res 2025; 11:104-114. [PMID: 39736855 PMCID: PMC11683307 DOI: 10.1016/j.ncrna.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
Cervical cancer (CC) is a global public health concern, primarily caused by persistent infection with oncogenic types of human papillomavirus (HPV). The World Health Organization (WHO) has established a plan to eliminate CC as a public health issue by the year 2100. However, the implementation of the HPV vaccine is impeded by vaccine restrictions and misinformation despite its demonstrated effectiveness. The CC treatment is influenced by the disease stage, with an unfavorable prognosis for those in advanced stages. This study aimed to investigate the potential of long non-coding RNAs (lncRNAs) in CC by identifying and characterizing related lncRNAs, elucidating their regulatory mechanisms and molecular interactions, and analyzing their expression patterns in patients with diverse responses to chemoradiotherapy. Non-stem cells from CC were isolated using flow cytometry sorting and used for total RNA extraction. The RNA was used to build libraries that were subsequently sequenced using the Illumina Nextseq 550.417 lncRNAs that showed differentially expressed between CC patients who responded or not to treatment. Further analysis demonstrated that these lncRNAs significantly interact with several molecules, which play crucial roles in CC progression and therapeutic resistance. Statistical analysis correlated the expression profile of these lncRNAs with treatment efficacy. Three lncRNAs, ENSG00000267838, ENSG00000266340, and FRMD6-AS1, were identified with positive expression related to non-response to chemoradiotherapy and worse progression-free survival in CC patients. Specifically, lncRNA ENSG00000267838 has its up-regulation related to non-response and down-regulation to response to chemoradiotherapy treatment.
Collapse
Affiliation(s)
- Bruna Custódio Dias Duarte
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Álvaro Percínio Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Angelo Borges de Melo Neto
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | | | | | - Wander de Jesus Jeremias
- Laboratório de Farmacologia Experimental, Escola de Farmácia, Universidade Federal de Ouro Preto, 35402-163, Ouro Preto, MG, Brazil
| | - Pedro Luiz Lima Bertarini
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Agnaldo Lopes da Silva Filho
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Flörkemeier I, Hotze HL, Heyne AL, Hildebrandt J, Weimer JP, Hedemann N, Rogmans C, Holthaus D, Siebert FA, Hirt M, Polten R, Morgan M, Klapdor R, Schambach A, Dempfle A, Maass N, van Mackelenbergh MT, Clement B, Bauerschlag DO. Dual Topoisomerase Inhibitor Is Highly Potent and Improves Antitumor Response to Radiotherapy in Cervical Carcinoma. Int J Mol Sci 2025; 26:2829. [PMID: 40243435 PMCID: PMC11988843 DOI: 10.3390/ijms26072829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in vaccination and early detection, the total number of cases and deaths from cervical cancer has risen steadily in recent decades, making it the fourth most common type of cancer in women worldwide. Low-income countries in particular struggle with limited resources and treatment limitations for cervical cancer. Thus, effective medicines that are simple to manufacture are needed. The newly developed dual topoisomerase inhibitor P8-D6, with its outstanding ability to induce apoptosis, could be a promising option. In this study, the efficacy of P8-D6 in combination with radiochemotherapy against cervical carcinoma was investigated in established cell lines and in a translational approach in ex vivo patient cells by measuring the cytotoxicity, cell viability and caspase activity in vitro in 2D and 3D cell cultures. Treatment with P8-D6 resulted in significantly greater cytotoxicity and apoptosis induction compared to standard therapeutic cisplatin in both 2D and 3D cell cultures. Specifically, a considerably stronger anti-proliferative effect was observed. The treatment also led to morphological changes and a loss of membrane integrity in the 3D spheroids. Radiotherapy also benefited greatly from P8-D6 treatment. In fact, P8-D6 was a more potent radiosensitizer than cisplatin. Simple synthesis, favorable physicochemical properties and high potency make P8-D6 a promising cervical cancer drug candidate.
Collapse
Affiliation(s)
- Inken Flörkemeier
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Hannah L. Hotze
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Anna Lena Heyne
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Jonas Hildebrandt
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Jörg P. Weimer
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Nina Hedemann
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Christoph Rogmans
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Frank-André Siebert
- Clinic of Radiotherapy, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Markus Hirt
- Clinic of Radiotherapy, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany
- Department of Gynecology and Obstetrics, Albertinen Hospital Hamburg, 22457 Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Marion T. van Mackelenbergh
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Bernd Clement
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Dirk O. Bauerschlag
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
- Department of Gynecology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
8
|
Meyer M, Fourie C, van der Merwe H, Botha H, Engelbrecht AM. Targeting treatment resistance in cervical cancer: A new avenue for senolytic therapies. Adv Med Sci 2025; 70:33-43. [PMID: 39549742 DOI: 10.1016/j.advms.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/27/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Cervical cancer poses a significant global health challenge, particularly impacting women in economically developing nations. This disparity stems from a combination of factors, including inadequate screening infrastructure and resource limitations. However, the foremost contributor is the widespread lack of awareness and limited accessibility to Human Papillomavirus (HPV) vaccination, which is a key preventative measure against cervical cancer development. Despite advancements in cervical cancer prevention, treatment resistance remains a major hurdle in achieving improved patient outcomes. Cellular senescence, specifically the senescence-associated secretory phenotype (SASP) and its bidirectional relationship with the immune system, has been implicated in resistance to conventional cervical cancer chemotherapy treatments. The exact mechanisms by which this state of growth arrest and the associated changes in immune regulation contribute to cervical cancer progression and the associated drug resistance are not entirely understood. This underscores the necessity for innovative strategies to address the prevalence of treatment-resistant cervical cancer, with one promising avenue being the utilisation of senolytics. Senolytics are agents that have promising efficacy in clearing senescent cells from tumour tissues, however neither the utilisation of senolytics for addressing senescence-induced treatment resistance nor the potential integration of immunotherapy as senolytic agents in cervical cancer treatment has been explored to date. This review provides a concise overview of the mechanisms underlying senescence induction and the pivotal role of the immune system in this process. Additionally, it explores various senolytic approaches that hold significant potential for advancing cervical cancer research.
Collapse
Affiliation(s)
- Madré Meyer
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Fourie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Haynes van der Merwe
- Department of Obstetrics and Gynaecology, Stellenbosch University Medical Campus, Cape Town, South Africa
| | - Hennie Botha
- Department of Obstetrics and Gynaecology, Stellenbosch University Medical Campus, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
9
|
Haiye J, Xiangzhu W, Yunfei Z, Shumin G, Chang N, Yaohui J, Heng Y, Xinmin N. Overexpressed NEK2 contributes to progression and cisplatin resistance through activating the Wnt/β-catenin signaling pathway in cervical cancer. Cancer Cell Int 2025; 25:45. [PMID: 39953509 PMCID: PMC11829479 DOI: 10.1186/s12935-025-03644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cervical cancer ranks as the fourth most common cancer among women, with cisplatin resistance posing a significant challenge to the long-term survival of patients. METHODS The roles of NEK2 in cervical cancer were examined through bioinformatics analysis. Transfection efficiency and molecular mechanisms were assessed using real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting (WB). To evaluate cell functions, a series of assays, including cell counting kit-8 (CCK-8), wound healing, transwell, colony formation, and flow cytometry (FCM), were performed on HeLa, SiHa, and HeLa/DDP (cisplatin-resistant) cell lines. RESULTS We found that NEK2 is upregulated in cervical cancer tissues compared to normal tissues and is further elevated in cisplatin-resistant cervical cancer compared to cisplatin-sensitive cases. The overexpression of NEK2 is associated with enhanced cancer progression, poorer prognosis, and increased cisplatin resistance in cervical cancer patients. Notably, in the presence of cisplatin, the knockdown of NEK2 inhibited cell viability, proliferation, migration, invasion, and G2/M phase arrest in cervical cancer cells, while also enhancing the sensitivity of cisplatin-resistant cervical cancer cells through the inactivation of the Wnt/β-catenin signaling pathway. CONCLUSIONS NEK2 is upregulated in cervical squamous cell carcinoma (CESC) compared to normal tissues and exhibits higher levels in cisplatin-resistant CESC than in sensitive counterparts, correlating with disease progression and poor prognosis. Thus, NEK2 is implicated in the cisplatin resistance of CESC via the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as a prognostic marker and a novel target for the diagnosis and treatment of cisplatin-resistant CESC.
Collapse
Affiliation(s)
- Jiang Haiye
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wang Xiangzhu
- Department of Conservative and Endodontic Dentistry, Xiangya School and Hospital of Stomatology, Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, 410008, China
| | - Zhang Yunfei
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Gui Shumin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ni Chang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiang Yaohui
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yin Heng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Nie Xinmin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
10
|
Dou L, Yan Y, Lu E, Li F, Tian D, Deng L, Zhang X, Zhang R, Li Y, Zhang Y, Sun Y. Composition analysis and mechanism of Guizhi Fuling capsule in anti-cisplatin-resistant ovarian cancer. Transl Oncol 2025; 52:102244. [PMID: 39662450 PMCID: PMC11683237 DOI: 10.1016/j.tranon.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/18/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
OBJECTIVE Cisplatin is the main chemotherapy drug for advanced ovarian cancer, but drug resistance often occurs. The aim of this study is to explore the molecular mechanism by which Guizhi Fuling capsule inhibits cisplatin resistance in ovarian cancer. METHODS First, differences in cisplatin resistance, PA2G4 gene expression, migration, and invasion in A2780 cells and A2780/DDP cells were analyzed by qRT-PCR, scratch assay, transwell, immunofluorescence, and western blotting. Then, LC-MS/MS analysis of GFC chemical composition. qRT-PCR, scratch tests, transwell, pseudopodium formation, immunofluorescence, and western blotting were used to explore the mechanism by which GFC inhibited A2780/DDP cell migration and invasion. Finally, the anti-tumor efficacy of GFC was verified by in vivo experiments. RESULTS A2780/DDP cells had a greater ability to migrate and invade compared to their parents. Cell viability experiments showed that the migration and invasion ability of A278/DDP cells were significantly inhibited with the increase of GFC concentration. qRT-PCR results showed that compared with the blank control group, cisplatin group and GFC group, the transcription level of PA2G4 gene in the combination treatment group was significantly reduced. We also found that GFC combined with cisplatin inhibited the PI3K/AKT/GSK-3β signaling pathway by targeting PA2G4 gene expression, inhibited the epithelial-mesenchymal transition signaling pathway, decreased cell adhesion and inhibited the formation of cell pseudopodias. CONCLUSION GFC combined with cisplatin can target PA2G4 gene to regulate PI3K/AKT/GSK-3β Signaling pathway, inhibiting the invasion and migration of cisplatin resistant A2780/DDP cells in ovarian cancer.
Collapse
Affiliation(s)
- Lei Dou
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Yan
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Enting Lu
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Fangmei Li
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Dongli Tian
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Lei Deng
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xue Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Rongjin Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Ye Sun
- Department of Pathogenic Biology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
11
|
Wang R, Deng J, Zhang M, Wang Z, Wu S, Liu S, Qi L. Overexpression of HYOU1 is associated with cisplatin resistance and may depend on m 6A modification in patients with cervical cancer. Oncol Lett 2025; 29:77. [PMID: 39650230 PMCID: PMC11622003 DOI: 10.3892/ol.2024.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cause of cancer-associated mortalities among women worldwide. The chemotherapeutical platinum-based agent cisplatin (DDP) is the standard therapy for locally advanced or recurrent CC; however, platinum resistance limits its clinical benefit. Therefore, the present study aimed to identify key genes associated with DDP resistance in patients with CC and investigate the underlying molecular mechanisms. Firstly, using the CRISPR-Cas9 dataset of CC cells derived from DepMap portal, 699 genes associated with CC cell survival were identified. Subsequently, using the gene expression profiles of normal and CC samples with a response status to DDP, derived from The Cancer Genome Atlas (TCGA), hypoxia upregulated 1 (HYOU1) was further identified as significantly upregulated in CC samples and patients that did not respond to DDP (non-responders) when compared with healthy controls and patients that did respond to DDP (responders), respectively, using unpaired student's t-tests. Additionally, the log-rank test revealed that the high expression of HYOU1 was significantly associated with the poor survival of patients receiving DDP. The association between the high HYOU1 expression levels and the poor survival of patients receiving DDP was validated in the remaining TCGA dataset of patients with CC. HYOU1 expression levels were positively associated with the half-maximal inhibitory concentration value of DDP in CC cells using data derived from the Genomics of Drug Sensitivity in Cancer database. In vitro, western blotting experiments revealed high HYOU1 protein expression levels in DDP-resistant HeLa cells compared with their parental HeLa cells. Furthermore, the knockdown of HYOU1 resulted in an increased sensitivity of HeLa cells to DDP. Finally, using the sequence-based RNA adenosine methylation site predictor program, it was found that N6-methyladenosine (m6A) was highly enriched in HYOU1. The expression levels of the m6A reader, EIF3A, was positively correlated with the expression levels of HYOU1 and was upregulated in the non-response group compared with the response group in a dataset from TCGA database. Additionally, EIF3A had the highest probability of binding to the m6A motifs of HYOU1 compared with other genes. In GSE56363 obtained from the Gene Expression Omnibus, the non-responders had significantly increased expression levels of EIF3A compared with the responders. In conclusion, high expression levels of HYOU1, which may be regulated by EIF3A due to m6A modifications, was associated with DDP resistance in patients with CC and could potentially be used as an indicator of DDP treatment resistance.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiaxing Deng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Meng Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhihui Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shangjie Wu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
12
|
Cao DM, Rao Y, Liu T, Yuan WQ. Combination of Metabolomics and Bioinformatics to Reveal the Mechanism of Luteolin in the Treatment of Cervical Cancer. Chem Biol Drug Des 2025; 105:e70059. [PMID: 39887883 DOI: 10.1111/cbdd.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
The incidence of cervical cancer is high among women globally. The potential therapeutic efficacy of luteolin in the treatment of cervical cancer has been identified. Therefore, we aim to elucidate the mechanism of action of luteolin in the treatment of cervical cancer through a comprehensive approach that integrates metabolomics with bioinformatics. The first step involved the identification of differential metabolites through UHPLC-Q-Orbitrap-MS, which were then utilized for enrichment analysis of metabolic pathways and to determine the targets associated with these differential metabolites. Subsequently, the differential analysis and WGCNA were employed to identify DEGs and functional module genes respectively. The common targets were obtained by intersecting the results from the aforementioned three analyses, followed by conducting GO and KEGG pathway enrichment analysis on these targets. Subsequently, PPI networks were constructed using these common targets, and key targets were identified utilizing the MCC, EPC, Degree, Closeness Centrality, Betweenness Centrality, and Bottleneck algorithms in the CytoHubba plug-in. The subsequent steps involved the analysis of key genes for constructing a nomogram, conducting a ROC curve, examining content expression and survival analysis, and ultimately employing molecular docking to investigate the interaction between luteolin and crucial targets. The metabolomics analysis revealed the identification of a total of 45 distinct metabolites in this study, primarily associated with amino acid and nucleotide metabolism. The intersection of 773 differential metabolite targets, 3493 cervical cancer differential genes, and 3245 WGCNA-associated module genes yielded a set of 32 target genes associated with luteolin therapy for cervical cancer. The GO and KEGG pathway enrichment analysis also revealed that these targets were primarily associated with amino acid metabolism and nucleotide metabolism. The CytoHubba plug-in was utilized to identify three key genes (DMNT1, EZH2, and GMPS) through the application of multiple algorithms. Additionally, the datasets GSE63514, GSE67522, and GEPIA2 revealed a significant upregulation of all three genes in tumor tissue. ROC analysis demonstrated the good predictive ability of these three hub genes. Finally, the molecular docking results demonstrated the high binding affinity of luteolin towards DMNT1, EZH2, and GMPS. In conclusion, this study has unveiled the potential of luteolin in modulating amino acid and nucleotide metabolism for the treatment of cervical cancer, thereby providing a theoretical foundation for further investigation into the intricate association between luteolin and cervical cancer.
Collapse
Affiliation(s)
- Dong-Min Cao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, China
| | - Yin Rao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tao Liu
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Mathematics and Big Data, Foshan University, Foshan, China
| |
Collapse
|
13
|
Anusha T, Brahman PK, Sesharamsingh B, Lakshmi A, Bhavani KS. Electrochemical detection of cervical cancer biomarkers. Clin Chim Acta 2025; 567:120103. [PMID: 39706248 DOI: 10.1016/j.cca.2024.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Cervical cancer (CC) is the fourth most common cancer among women worldwide, following breast, colorectal, and lung cancers. Each year, it accounts for approximately 600,000 new cases and 340,000 deaths. Early-stage cervical cancer is treatable with surgery and chemoradiotherapy (CCRT). However, treatment for metastatic cervical cancer is limited, with bevacizumab combined with chemotherapy being one of the few options, though survival rates remain low. Currently, the diagnosis of cervical cancer primarily relies on Pap smears and colposcopy. Although these methods are essential for detection, they are costly, labor-intensive, and require significant resources. Therefore, there is an urgent need to identify effective biomarkers that can detect cervical cancer at an early stage, improving both the accuracy of diagnosis and the efficacy of treatment. Although numerous cervical cancer biomarkers have been identified for the cervical cancer thanks to advances in technology. In recent times, electrochemical methods have proven to be particularly effective in cervical cancer detection. In this paper, we reviewed the important cervical cancer biomarkers and their detection through electrochemical biosensors, which offer advantages such as higher sensitivity, affordability, and ease of analysis. Furthermore, we discussed the limitations and future prospects of electrochemical biosensors in this field.
Collapse
Affiliation(s)
- Tummala Anusha
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India.
| | - Pradeep Kumar Brahman
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Bondili Sesharamsingh
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Allu Lakshmi
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - K Sai Bhavani
- Department of Chemistry, Andhra Loyola College, Vijayawada, A.P, India
| |
Collapse
|
14
|
Eswaran S, Bhat S, Upadhya D, Mascarenhas R, Kabekkodu SP. Biological functions of extracellular vesicle double C2-like domain beta in cervical cancer. Sci Rep 2025; 15:477. [PMID: 39747389 PMCID: PMC11695970 DOI: 10.1038/s41598-024-84643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
Double C-2 Like Domain Beta (DOC2B) located at 17q13.3 prevents metastasis by senescence induction and epithelial to mesenchymal transition inhibition in cervical cancer (CC). The extracellular vesicle (EV) mediated trafficking of DOC2B and its impact on tumor suppressive activity are not investigated in CC. Using a retroviral method, we first ectopically expressed DOC2B in SiHa, which do not normally express DOC2B. DOC2B-SiHa and vector-SiHa EVs were co-incubated separately with recipient cell and subjected to various cellular and biochemical experiments. For the first time, we demonstrated that DOC2B localizes to EVs, and its transfer to EV may require intracellular calcium. Co-culture of SiHa and HeLa cells with DOC2B-SiHa derived EVs induced morphological changes and suppressed their growth and migration, possibly by induction of G0/G1 to S phase arrest and anoikis. DOC2B-SiHa EVs elevated intracellular reactive oxygen species (ROS) and calcium levels and promoted lipid droplet accumulation and lipid peroxidation rate in recipient cells. DOC2B-SiHa EVs reduced active AKT1 and ERK1/2 levels and EMT marker expression and enhanced cellular senescence and cytotoxic effects of cisplatin. Re-expression of DOC2B significantly altered the global metabolite profile of EVs. Finally, we demonstrated that intracellular calcium chelation significantly reduces DOC2B localization to EVs and impacts its tumor-suppressive properties. Altogether, EV-mediated DOC2B transfer may reduce the aggressive behavior of CC cells.
Collapse
Affiliation(s)
- Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Roshan Mascarenhas
- Newcastle University Medicine Malaysia (NUMed), 79200, Johor Bahru, Malaysia
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Hakim RU, Amin T, Ul Islam SMB. Advances and Challenges in Cervical Cancer: From Molecular Mechanisms and Global Epidemiology to Innovative Therapies and Prevention Strategies. Cancer Control 2025; 32:10732748251336415. [PMID: 40267919 PMCID: PMC12034968 DOI: 10.1177/10732748251336415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
BackgroundIn the global scenario of public health, cervical cancer poses a major threat with high mortality rates, especially in women. New incidence cases and prevalence vary across different regions, as recently shown by GLOBOCAN data. The development of cervical cancer is primarily due to persistent infection by high-risk genotypes of human papillomavirus (HPV), which is a multifaceted process that is influenced by genetic, environmental, and lifestyle factors.PurposeThe goal of this study is to thoroughly investigate cervical cancer, including its etiology, molecular mechanisms, progression, diagnosis strategies, and current therapies. This review further highlights the transformative power of HPV vaccination and screening programs in curbing the disease's burden and potentially promising novel approaches like immunotherapy and targeted therapy.Research DesignThis is a narrative review article that summarizes previous literatures regarding cervical cancer in terms of molecular mechanism, etiology, clinical developments, and prevention.Study SampleThe review encompassed studies from diverse sources, including experimental, observational, and clinical research published between 1992 and 2025.Data Collection and/or AnalysisData were collected through comprehensive literature searches using databases such as PubMed, Scopus, and the Cochrane Library with defined inclusion and exclusion criteria.ResultsNonetheless, there are gaps in research and controversies regarding vaccine coverage, screening practices, and treatment accessibility for poor populations. Precision medicine trends are emerging along with new biomarkers for early detection and personalized treatment, which also form part of this discussion. Key findings include the critical role of prevention measures in controlling the global impact of cervical cancer.ConclusionsThe paper synthesizes the existing knowledge and identifies gaps that require further research, which is significant in augmenting prevention, diagnosis, and treatment of cervical cancer towards addressing its public health implications worldwide.
Collapse
Affiliation(s)
- Raiyan Ul Hakim
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - S M Bakhtiar Ul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
16
|
Li J, Chen ZS, Pan Y, Zeng L. The important role of lactylation in regulating DNA damage repair and tumor chemotherapy resistance. Drug Resist Updat 2025; 78:101148. [PMID: 39271382 DOI: 10.1016/j.drup.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Jia Li
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yihang Pan
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China.
| | - Leli Zeng
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
17
|
Hałas-Wiśniewska M, Arendt W, Grzanka A, Izdebska M. Downregulation of Ezrin Suppresses Migration Potential in Cervical Cancer Cells. Pharmaceuticals (Basel) 2024; 18:3. [PMID: 39861066 PMCID: PMC11769092 DOI: 10.3390/ph18010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The literature reports that ezrin (EZR) is important as a linker between microfilaments and cellular environments. Moreover, it affects cancer cell migration, but the exact mechanism is not fully understood. In this study, we aimed to investigate the role of EZR in the migration of two different types of cervical cancer cells-from primary lesion (SiHa) and lymph node metastases (HT-3). In addition, we showed for the first time that a reduced EZR protein level affects the cellular response to the routinely used treatment with cisplatin. METHODS The most important stage of the study consisted of conducting a series of tests enabling the assessment of the migration potential of cervical cancer cells without altered EZR expression and with silenced protein expression. RESULTS Reducing the EZR level resulted in a decrease in the invasive and migration potential of SiHa and HT-3 cells' inhibition of colony formation, a decrease in adhesive properties, and a strong reorganization of F-actin with a dominance of cells with a mitotic catastrophe phenotype. A lower level of protein significantly reduces the motor skills of SiHa and HT-3 cervical cancer cells. CONCLUSIONS This significantly affects the assessment of EZR as a potential factor that can limit the development of metastases in targeted cancer therapy of cervical cancer.
Collapse
Affiliation(s)
- Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (A.G.); (M.I.)
| | | | | | | |
Collapse
|
18
|
Hunt HL, Goncalves BG, Biggs MA, Rico MI, Murray ME, Lebedenko CG, Banerjee IA. Design and investigation of interactions of novel peptide conjugates of purine and pyrimidine derivatives with EGFR and its mutant T790M/L858R: an in silico and laboratory study. Mol Divers 2024; 28:3683-3711. [PMID: 38240950 DOI: 10.1007/s11030-023-10772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
Peptide-based therapeutics have been gaining attention due to their ability to actively target tumor cells. Additionally, several varieties of nucleotide derivatives have been developed to reduce cell proliferation and induce apoptosis of tumor cells. In this work, we have developed novel peptide conjugates with newly designed purine analogs and pyrimidine derivatives and explored the binding interactions with the kinase domain of wild-type EGFR and its mutant EGFR [L858R/ T790M] which are known to be over-expressed in tumor cells. The peptides explored included WNWKV (derived from sea cucumber) and LARFFS, which in previous work was predicted to bind to Domain I of EGFR. Computational studies conducted to explore binding interactions include molecular docking studies, molecular dynamics simulations and MMGBSA to investigate the binding abilities and stability of the complexes. The results indicate that conjugation enhanced binding capabilities, particularly for the WNWKV conjugates. MMGBSA analysis revealed nearly twofold higher binding toward the T790M/L858R double mutant receptor. Several conjugates were shown to have strong and stable binding with both wild-type and mutant EGFR. As a proof of concept, we synthesized pyrimidine conjugates with both peptides and determined the KD values using SPR analysis. The results corroborated with the computational analyses. Additionally, cell viability and apoptosis studies with lung cancer cells expressing the wild-type and double mutant proteins revealed that the WNWKV conjugate showed greater potency than the LARFFS conjugate, while LARFFS peptide alone showed poor binding to the kinase domain. Thus, we have designed peptide conjugates that show potential for further laboratory studies for developing therapeutics for targeting the EGFR receptor and its mutant T790M/L858R.
Collapse
Affiliation(s)
- Hannah L Hunt
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mia I Rico
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Molly E Murray
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
19
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
20
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
21
|
Hu S, Meng Y, Guo L, Xu X. A novel strategy to enhance inhibition of Hela cervical cancer by combining Lentinus β-glucan and autophagic flux blockage. Int J Biol Macromol 2024; 281:136309. [PMID: 39370081 DOI: 10.1016/j.ijbiomac.2024.136309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Lentinus β-D-glucan (LNT), derived from artificially cultured mushrooms of Lentinus edodes, shows an important yet incompletely understood biological functions in cancer. In this work, the chemical structure of the refined LNT comprising a β-D-(1, 6)-branched β-D-(1,3)-glucan was further clarified via 1D- and 2D-NMR with high resolution, and its drug resistance resulted from autophagy in human cervical cancer (CC) Hela cells besides its anti-cancer function were revealed in vitro and in vivo. In detail, LNT destroyed cellular homeostasis by significantly increasing the intracellular Ca2+ levels and promoted autophagic flux in vitro Hela cells, which was found to at least partially depend on the PI3K/Akt/mTOR-mediated pathway by up-regulating LC3-II levels and down-regulating the expression of p62, PI3K, p-Akt, and mTOR in Hela cells-transplanted BALB/c nude mice. In particular, LNT-induced autophagy led to a drug resistance against LNT-induced proliferation inhibition and apoptosis in Hela cells, and the co-treatment of autophagy inhibitors and LNT significantly enhanced the inhibition of Hela cells and tumor growth in vitro and in vivo. Therefore, the combination of LNT and autophagy inhibitors will be a novel therapeutic strategy to reduce the resistance and improve the prognosis of CC patients in the clinical.
Collapse
Affiliation(s)
- Shuqian Hu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University; College of Chemistry and Molecular Sciences; Hubei Engineering Center of Natural Polymer-Based Medical Materials; Wuhan University, Wuhan 430072, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University; College of Chemistry and Molecular Sciences; Hubei Engineering Center of Natural Polymer-Based Medical Materials; Wuhan University, Wuhan 430072, China.
| | - Xiaojuan Xu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University; College of Chemistry and Molecular Sciences; Hubei Engineering Center of Natural Polymer-Based Medical Materials; Wuhan University, Wuhan 430072, China.
| |
Collapse
|
22
|
Modabber N, Mahboub SS, Khoshravesh S, Karimpour F, Karimi A, Goodarzi V. Evaluation of Long Non-coding RNA (LncRNA) in the Pathogenesis of Chemotherapy Resistance in Cervical Cancer: Diagnostic and Prognostic Approach. Mol Biotechnol 2024; 66:2751-2768. [PMID: 37804407 DOI: 10.1007/s12033-023-00909-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Cervical cancer (CC), caused by human papillomavirus (HPV), is a leading cause of female malignancies worldwide. Therefore, understanding the underlying mechanisms of CC development and identifying novel therapeutic targets are significantly important. Cisplatin resistance is a significant challenge in the management of CC. Recent studies highlighted the critical role of long non-coding RNAs (lncRNAs) in modulation of cisplatin resistance. This comprehensive review aims to collect the current understanding roles of lncRNAs and their involvement in cisplatin resistance in CC by highlighting key processes of cancer progression, including apoptosis, proliferation, angiogenesis and epithelial-to-mesenchymal transition (EMT). We discussed the role of lncRNA in CC resistance to cisplatin through molecular pathways and examined gene expression changes. We also discussed treatment strategies and factors that reduce CC resistance to cisplatin by targeting them.
Collapse
Affiliation(s)
- Noushin Modabber
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Sadat Mahboub
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Karimpour
- Cancer Reserch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anita Karimi
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
23
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
24
|
Holthaus D, Rogmans C, Gursinski I, Quevedo-Olmos A, Ehsani M, Mangler M, Flörkemeier I, Weimer JP, Meyer TF, Maass N, Bauerschlag DO, Hedemann N. Inhibition of ADAM17 increases the cytotoxic effect of cisplatin in cervical spheroids and organoids. Front Oncol 2024; 14:1432239. [PMID: 39286024 PMCID: PMC11402614 DOI: 10.3389/fonc.2024.1432239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Cervical cancer represents one of the main causes of female, cancer-related mortality worldwide. The majority of cancers are caused by human papillomaviruses such as HPV16 and HPV18. As chemotherapeutic resistance to first-line platinum treatment is still a predominant clinical challenge in advanced cervical cancer, novel treatment options including combinatorial therapies are urgently required to overcome chemotherapeutic resistance. Inhibition of A Disintegrin And Metalloproteinase (ADAM)-family members, heavily involved in tumour progression of a vast range of solid tumours, strongly improved response to chemotherapeutic treatment in other tumour entities including ovarian cancer. Methods We established two- and three-dimensional models derived from three traditional cervical cancer cell lines and ectocervical cancer-derived organoids. Following characterisation, these models were used to investigate their response to cisplatin treatment in the absence and presence of ADAM inhibitors using viability assays and automated live cell imaging. Results The pivotal role of the metalloprotease ADAM17 driving chemotherapy resistance was detectable in all ectocervical cultures irrespective of the model system used, whereas ADAM10 inhibition was predominantly effective only in loosely aggregated spheroids. We showed prominent differences regarding treatment responses between 2D monolayers compared to 3D spheroid and 3D organoid model systems. Particularly, the organoid system, regarded as the closest representation of primary tumours, exhibited reliably the combinatorial effect of ADAM17 inhibition and cisplatin in all three individual donors. Discussion As two- and three-dimensional models of the same cell lines differ in their responses to chemotherapy it is essential to validate treatment strategies in more advanced model systems representing the patient situation more realistically. Ectocervical organoids showed reliable results regarding treatment responses closely mimicking the primary tumours and could therefore serve as an important tool for personalized medicine in cervical cancer. These findings strengthen the role of ADAM17 as a potential novel target for combinatorial treatments to overcome chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- David Holthaus
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ina Gursinski
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alvaro Quevedo-Olmos
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marzieh Ehsani
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mandy Mangler
- Department of Gynaecology and Obstetrics, Vivantes Auguste Viktoria-Klinikum, Berlin, Germany
- Department of Gynaecology, Charité University Medicine, Berlin, Germany
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jörg P Weimer
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinic and Polyclinic for Gynaecology and Reproductive Medicine, University Hospital Jena, Jena, Germany
| | - Nina Hedemann
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
25
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
26
|
Vidal-Gutiérrez M, Torres-Moreno H, Arenas-Luna VM, Loredo-Mendoza ML, Tejeda-Dominguez F, Velazquez C, Vilegas W, Hernandez-Gutiérrez S, Robles-Zepeda RE. Tumour growth inhibitory effect of Ibervillea sonorae phytopreparations in cervical cancer xenografts. Nat Prod Res 2024:1-9. [PMID: 39165143 DOI: 10.1080/14786419.2024.2394095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cucurbitacin IIb, a triterpene obtained from the Ibervillea sonorae plant, reduces tumour development in a preclinical model of cervical cancer. Acetison and Etanison, phytopreparations made from I. sonorae, present biological activity analogous to CIIb in HeLa. This research evaluated the tumour growth inhibitory effect of these phytopreparations in a HeLa xenograft tumour model in BALB/c nude mice. Tumours in mice were treated every 3 days for 12 days with cisplatin (2 mg/kg), CIIb (5 mg/kg), Acetison (20 mg/kg), Etanison (30 mg/kg), and DMSO at 2%. For histological observations, tumours were stained with H&E. Fingerprinting of both phytopreparations was performed using HPLC-UV and UHPLC-APCI-IT-MS. Both phytopreparations and CIIb inhibit tumour development as well as Cisplatin (75.5%); Etanison (77.7%), Acetison (73.6%), and CIIb (73.0%). Furthermore, only tumours treated with cisplatin showed invasion of bone tissue. The results show the potential use of I. sonorae phytopreparations in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Max Vidal-Gutiérrez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Centro, Hermosillo Sonora, México
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa, Sonora, CP, México
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora - Avenida Universidad e Irigoyen, Caborca Sonora, CP, México
| | - Víctor M Arenas-Luna
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - María Lilia Loredo-Mendoza
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - Farid Tejeda-Dominguez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Centro, Hermosillo Sonora, México
| | - Wagner Vilegas
- Universidade Estadual Paulista (UNESP), Coastal Campus of São Vicente, São Paulo, CEP, Brazil
| | - Salomón Hernandez-Gutiérrez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Centro, Hermosillo Sonora, México
| |
Collapse
|
27
|
Pereira D, Alves N, Sousa Â, Valente JFA. Metal-based approaches to fight cervical cancer. Drug Discov Today 2024; 29:104073. [PMID: 38944184 DOI: 10.1016/j.drudis.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of death among women worldwide. The current treatments for this cancer consist of invasive methods such as chemotherapeutic drugs, radiation, immunotherapy and surgery, which could lead to severe side effects and hinder the patient's life quality. Although metal-based therapies, including cisplatin and ruthenium-based compounds, offer promising alternatives, they lack specificity and harm healthy cells. Combining metal nanoparticles with standard approaches has demonstrated remarkable efficacy and safety in the fight against CC. Overall, this review is intended to show the latest advancements and insights into metal-based strategies, creating a promising path for more effective and safer treatments in the battle against CC.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Nuno Alves
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Joana F A Valente
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal.
| |
Collapse
|
28
|
Jeeunngoi J, Senawong G, Jogloy S, Prompipak J, Samankul A, Utaiwat S, Woranam K, Sripa B, Senawong T. Anticancer Potential of Valencia Peanut ( Arachis hypogaea L.) Skin Extract against Cervical Cancer Cells In Vitro and in Nude Mouse Xenograft Models. Foods 2024; 13:2354. [PMID: 39123546 PMCID: PMC11312182 DOI: 10.3390/foods13152354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the impact of Valencia KK4-type peanut skin ethanolic extract (KK4-PSE) combined with cisplatin or 5-fluorouracil (5-FU) on HeLa cells in vitro and in xenograft models. At exposure times of 24, 48 and 72 h, KK4-PSE inhibited the growth of HeLa cells with a half maximal inhibitory concentration (IC50) of 79.43 ± 0.54, 55.55 ± 1.57 and 41.32 ± 0.74 µg/mL, respectively. Drug interactions evaluated by the Chou-Talalay method demonstrated that KK4-PSE enhanced antiproliferative activity of 5-FU against HeLa cells with combination index (CI) values of 0.49 (48 h) and 0.60 (72 h), indicating a synergistic effect, while KK4-PSE combined with cisplatin exhibited an additive effect (CI = 1.02) at 72 h, and an antagonistic effect at 24 and 48 h exposures (CI = 1.12 and 1.18, respectively). In nude mouse xenograft models, the combination of 5-FU and KK4-PSE markedly reduced HeLa tumor weights compared with the control and single agent treatments groups. The combination of KK4-PSE and 5-FU achieved greater tumor growth inhibition than that of the KK4-PSE-cisplatin combination. KK4-PSE mitigated hepatotoxicity induced by both cisplatin and 5-FU in nude mice. The spleen hyaloserositis was significantly reduced in the combination treatment of 5-FU and KK4-PSE. These results suggest that KK4-PSE has the potential to limit cervical cancer cell proliferation while reducing the toxicity of cisplatin and 5-FU.
Collapse
Affiliation(s)
- Jarckrit Jeeunngoi
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| | - Sanun Jogloy
- Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jeerati Prompipak
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| | - Arunta Samankul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| | - Suppawit Utaiwat
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| | - Khanutsanan Woranam
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (G.S.); (J.P.); (A.S.); (S.U.); (K.W.)
| |
Collapse
|
29
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
30
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
31
|
Welsh A, Matshitse R, Khan SF, Nyokong T, Prince S, Smith GS. Trinuclear ruthenium(II) polypyridyl complexes: Evaluation as photosensitizers for enhanced cervical cancer treatment. J Inorg Biochem 2024; 256:112545. [PMID: 38581803 DOI: 10.1016/j.jinorgbio.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Trinuclear ruthenium(II) polypyridyl complexes anchored to benzimidazole-triazine / trisamine scaffolds were investigated as photosensitizers for photodynamic therapy. The trinuclear complexes were noted to produce a significant amount of singlet oxygen in both DMF and aqueous media, are photostable and show appreciable emission quantum yields (ɸem). In our experimental setting, despite the moderate phototoxic activity in the HeLa cervical cancer cell line, the phototoxic indices (PI) of the trinuclear complexes are superior relative to the PIs of a clinically approved photosensitizer, Photofrin®, and the pro-drug 5-aminolevulinic acid (PI: >7 relative to PI: >1 and PI: 4.4 for 5-aminolevulinic acid and Photofrin®, respectively). Furthermore, the ruthenium complexes were noted to show appreciable long-term cytotoxicity upon light irradiation in HeLa cells in a concentration-dependent manner. Consequently, this long-term activity of the ruthenium(II) polypyridyl complexes embodies their ability to reduce the probability of the recurrence of cervical cancer. Taken together, this presents a strong motivation for the development of polymetallic complexes as anticancer agents.
Collapse
Affiliation(s)
- Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa
| | - Refilwe Matshitse
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Saif F Khan
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa.
| |
Collapse
|
32
|
Zhen X, Zhang M, Hao S, Sun J. Glucose-6-phosphate dehydrogenase and transketolase: Key factors in breast cancer progression and therapy. Biomed Pharmacother 2024; 176:116935. [PMID: 38876050 DOI: 10.1016/j.biopha.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is one of the most common malignant tumors in women and is a serious threat to women's health. The pentose phosphate pathway (PPP) is a mode of oxidative breakdown of glucose that can be divided into oxidative (oxPPP) and non-oxidative (non-oxPPP) stages and is necessary for cell and body survival. However, abnormal activation of PPP often leads to proliferation, migration, invasion, and chemotherapy resistance in breast cancer. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in PPP oxidation. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced by G6PD is the raw material for cholesterol and lipid synthesis and can resist the production of oxygen species (ROS) and reduce oxidative stress damage to tumor cells. Transketolase (TKT) is a key enzyme in non-oxPPP. Ribose 5-phosphate (R5P), produced by TKT, is a raw material for DNA and RNA synthesis, and is essential for tumor cell proliferation and DNA damage repair. In this review, we describe the role and specific mechanism of the PPP and the two most important enzymes of the PPP, G6PD and TKT, in the malignant progression of breast cancer, providing strategies for future clinical treatment of breast cancer and a theoretical basis for breast cancer research.
Collapse
Affiliation(s)
- Xin Zhen
- Department of Physical examination center, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, Changchun 130033, People's Republic of China
| | - Mingyu Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, Changchun 130033, People's Republic of China
| | - Shiming Hao
- Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, People's Republic of China.
| | - Jing Sun
- Department of Physical examination center, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, Changchun 130033, People's Republic of China.
| |
Collapse
|
33
|
Liu Z, Yang Z, Ablise M. Design and synthesis of novel imidazole-chalcone derivatives as microtubule protein polymerization inhibitors to treat cervical cancer and reverse cisplatin resistance. Bioorg Chem 2024; 147:107310. [PMID: 38583249 DOI: 10.1016/j.bioorg.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 μM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/β-tubulin in cancer cells, reduced the expression of polymerized α-/β-tubulin, and increased the expression of depolymerized α-/β-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.
Collapse
Affiliation(s)
- Zhengye Liu
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zheng Yang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
34
|
Queiroz GCDAD, Dias FCR, Torres SMD, Pereira MDF, Morais DB, Silva WED, Silva Junior VAD. Bioconjugate based on cisplatin and bacterial exopolysaccharide with reduced side effects: A novel proposal for cancer treatment. J Trace Elem Med Biol 2024; 83:127374. [PMID: 38266419 DOI: 10.1016/j.jtemb.2023.127374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In the search for alternatives that attenuate the toxicity associated to oncologic treatment with cisplatin (CDDP) and considering the potential health-beneficial properties of exopolysaccharides (EPS) produced by lactic acid bacteria, it was aimed on this study to evaluate the cytotoxic, toxicologic and antitumoral efficacy of a bioconjugate based on CDDP and EPS, on the experimental tumor of sarcoma 180. METHODS After the synthesis of the cis-[Pt(NH3)2(Cl)2] complex and of the conjugate containing Lactobacillus fermentum exopolysaccharide was tested both in vitro and in vivo for evaluating the acute toxicity. RESULTS The antitumoral study was performed using mice transplanted with sarcoma 180. The bioconjugate showed low to medium cytotoxicity for the cell lines tested, as well moderated acute toxicity. After determining the LD50, the following experimental groups were established for the antitumor assay: Control (NaCl 0,9%), CDDP (1 mg/kg), EPS and bioconjugate composition (200 mg/kg). The bioconjugate promoted a 38% regression in tumor mass when compared to the control, and a regression of 41% when compared to CDDP. Liver histopathological analysis revealed discrete alterations in animals treated with (CDDP + EPS) when compared to control. The bioconjugate also minimized changes in the renal parenchyma resulting from the tumor. CONCLUSION Our results indicate that when CDDP is associated with EPS, this composition was more biocompatible, showing itself as a potent chemotherapeutic agent and lower tissue toxicity.
Collapse
Affiliation(s)
- Gian Carlo D Angelo de Queiroz
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil
| | - Fernanda Carolina Ribeiro Dias
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil; Department of Structural Biology, Federal University of Triangulo Mineiro, UFTM, Uberaba, MG, Brazil.
| | - Sandra Maria de Torres
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil
| | | | - Danielle Barbosa Morais
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Wagner Eduardo da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil
| | | |
Collapse
|
35
|
Gong H, Zhao L, Liu J. Protective effect of tretinoin on cervical cancer growth and proliferation through downregulation of pFAK2 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:2732-2740. [PMID: 38251951 DOI: 10.1002/tox.24144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 μM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.
Collapse
Affiliation(s)
- Hui Gong
- Department of Physical Examination Center, Second Afficial Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lina Zhao
- Department of Obstetrics, Guangdong Woman and Children Hospital, Guangzhou, Guangdong, China
| | - Juntao Liu
- Department of Operation Room, Second Afficial Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
36
|
Li M, Chen J, Zhang H, Zhang Y, Wang J, Shen Z, Chen Y, Hou W, Chi C. LOC644656 promotes cisplatin resistance in cervical cancer by recruiting ZNF143 and activating the transcription of E6-AP. Cell Signal 2024; 117:111115. [PMID: 38395183 DOI: 10.1016/j.cellsig.2024.111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Cisplatin resistance remains a persistent challenge in cervical cancer (CC) treatment. Molecular biomarkers have garnered attention for their association with cisplatin resistance in various diseases. Long non-coding RNAs (lncRNAs) exert significant influence on CC development. This study explores the role of LOC644656 in regulating cisplatin resistance in CC. Parental and cisplatin-resistant CC cells underwent cisplatin treatment. Functional assays assessed cell proliferation and apoptosis under different conditions. RNA pull-down with mass spectrometry, along with literature review, elucidated the interaction between LOC644656, ZNF143, and E6-AP. Mechanistic assays analyzed the relationship between different factors. RT-qPCR and western blot quantified RNA and protein levels, respectively. In vivo models validated E6-AP's function. Results revealed LOC644656 overexpression in cisplatin-resistant CC cells, exacerbating cell growth. LOC644656 recruited ZNF143 to activate E6-AP transcription, promoting cisplatin resistance in CC. In conclusion, LOC644656 positively modulates E6-AP expression via ZNF143-mediated transcriptional activation, contributing to cisplatin resistance in CC.
Collapse
Affiliation(s)
- Min Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiahui Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zongji Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenjie Hou
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Soochow University, Suzhou 215127, China.
| | - Chi Chi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
37
|
Alqahtani QH, Alkharashi LA, Alajami H, Alkharashi I, Alkharashi L, Alhinti SN. Pioglitazone enhances cisplatin's impact on triple-negative breast cancer: Role of PPARγ in cell apoptosis. Saudi Pharm J 2024; 32:102059. [PMID: 38601974 PMCID: PMC11004990 DOI: 10.1016/j.jsps.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) has been recently shown to play a role in many cancers. The breast tissue of triple-negative breast cancer (TNBC) patients were found to have a significantly lower expression of PPARγ than the other subtypes. Furthermore, PPARγ activation was found to exert anti-tumor effects by inhibiting cell proliferation, differentiation, cell growth, cell cycle, and inducing apoptosis. To start with, we performed a bioinformatic analysis of data from OncoDB, which showed a lower expression pattern of PPARγ in different cancer types. In addition, high expression of PPARγ was associated with better breast cancer patient survival. Therefore, we tested the impact of pioglitazone, a PPARγ ligand, on the cytotoxic activity of cisplatin in the TNBC cell line. MDA-MB-231 cells were treated with either cisplatin (40 μM) with or without pioglitazone (30 or 60 μM) for 72 h. The MTT results showed a significant dose-dependent decrease in cell viability as a result of using cisplatin and pioglitazone combination compared with cisplatin alone. In addition, the protein expression of Bcl-2, a known antiapoptotic marker, decreased in the cells treated with cisplatin and pioglitazone combination at doses of 40 and 30 μM, respectively. On the other hand, cleaved- poly-ADP ribose polymerase (PARP) and -caspase-9, which are known as pro-apoptotic markers, were upregulated in the combination group compared with the solo treatments. Taken together, the addition of pioglitazone to cisplatin further reduced the viability of MDA-MB-231 cells and enhanced apoptosis compared with chemotherapy alone.
Collapse
Affiliation(s)
- Qamraa Hamad Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Layla Abdullah Alkharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanaa Alajami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ishraq Alkharashi
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Layan Alkharashi
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shoug Nasser Alhinti
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Choi SY, Kim S, Jeon JY, Kim MG, Lee SY, Shin KH. Metabolomic Profiles in Patients with Cervical Cancer Undergoing Cisplatin and Radiation Therapy. Biomol Ther (Seoul) 2024; 32:379-389. [PMID: 38586913 PMCID: PMC11063475 DOI: 10.4062/biomolther.2023.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 04/09/2024] Open
Abstract
This study was aimed to evaluate endogenous metabolic changes before and after cisplatin and radiation therapy in patients with cervical cancer via untargeted metabolomic analysis using plasma samples. A total of 13 cervical cancer patients were enrolled in this study. Plasma samples were collected from each patient on two occasions: approximately one week before therapy (P1) and after completion of cisplatin and radiation therapy (P2). Of the 13 patients, 12 patients received both cisplatin and radiation therapy, whereas one patient received radiation therapy alone. The samples were analyzed using the Ultimate 3000 coupled with Q ExactiveTM Focus Hybrid Quadrupole-OrbitrapTM mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic separation utilized a Kinetex C18 column 2.1×100 mm (2.6 μm) (Phenomenex, Torrance, CA, USA), and the temperature was maintained at 40°C. Following P2, there were statistically significant increases in the concentrations of indoxyl sulfate, phenylacetylglutamine, Lysophosphatidyethanolamine (LysoPE) (18:1), and indole-3-acetic acid compared with the concentrations observed at P1. Specifically, in the human papillomavirus (HPV) noninfection group, indoxyl sulfate, LysoPE (18:1), and phenylacetylglutamine showed statistically significant increases at P2 compared with P1. No significant changes in metabolite concentrations were observed in the HPV infection group. Indoxyl sulfate, LysoPE (18:1), phenylacetylglutamine, and indole-3-acetic acid were significantly increased following cisplatin and radiation therapy.
Collapse
Affiliation(s)
- Seo-Yeon Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suin Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Young Jeon
- Center for Clinical Pharmacology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Min-Gul Kim
- Center for Clinical Pharmacology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pharmacology, School of Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Sun-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Departments of Radiation Oncology, School of Medicine, Jeonbuk National University, Jeonju 561712, Republic of Korea
| | - Kwang-Hee Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
39
|
Mehta H, Ambele MA, Mokgautsi N, Moela P. Probing the Effects of Retinoblastoma Binding Protein 6 (RBBP6) Knockdown on the Sensitivity of Cisplatin in Cervical Cancer Cells. Cells 2024; 13:700. [PMID: 38667315 PMCID: PMC11049397 DOI: 10.3390/cells13080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Cervical cancer is a major cause of death in women despite the advancement of current treatment modalities. The conventional therapeutic agent, cisplatin (CCDP), is the standard treatment for CC; however, resistance often develops due to the cancer's heterogeneity. Therefore, a detailed elucidation of the specific molecular mechanisms driving CC is crucial for the development of targeted therapeutic strategies. Retinoblastoma binding protein 6 (RBBP6) is a potential biomarker associated with cell proliferation and is upregulated in cervical cancer sites, exhibiting apoptosis and dysregulated p53 expression. Furthermore, RBBP6 has been demonstrated to sensitize cancer cells to radiation and certain chemotherapeutic agents by regulating the Bcl-2 gene, thus suggesting a crosstalk among RBBP6/p53/BCL-2 oncogenic signatures. The present study, therefore, investigated the relationship between cisplatin and RBBP6 expression in CC cells. Herein, we first explored bioinformatics simulations and identified that the RBBP6/p53/BCL-2 signaling pathway is overexpressed and correlated with CC. For further analysis, we explored the Genomics of Drug Sensitivity in Cancer (GDSC) and found that most of the CC cell lines are sensitive to CCDP. To validate these findings, RBBP6 was silenced in HeLa and Vero cells using RNAi technology, followed by measurement of wild-type p53 and Bcl-2 at the mRNA level using qPCR. Cells co-treated with cisplatin and siRBBP6 were subsequently analyzed for apoptosis induction and real-time growth monitoring using flow cytometry and the xCELLigence system, respectively. Cancer cells in the co-treatment group showed a reduction in apoptosis compared to the cisplatin-treated group. Moreover, the real-time growth monitoring revealed a reduced growth rate in RBBP6 knockdown cells treated with cisplatin. Although wild-type p53 remained unchanged in the co-treatment group of cancer cells, Bcl-2 was completely repressed, suggesting that RBBP6 is necessary for sensitizing cervical cancer cells to cisplatin treatment by downregulating Bcl-2. The Vero cell population, which served as a non-cancerous control cell line in this study, remained viable following treatment with both siRBBP6 and cisplatin. Findings from this study suggest that RBBP6 expression promotes cisplatin sensitivity in HeLa cells through Bcl-2 downregulation. Knockdown of RBBP6 limits apoptosis induction and delays cell growth inhibition in response to cisplatin. The knowledge obtained here has the potential to help improve cisplatin efficacy through personalized administration based on the expression profile of RBBP6 among individual patients.
Collapse
Affiliation(s)
- Harshini Mehta
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.M.); (N.M.)
| | - Melvin Anyasi Ambele
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ntlotlang Mokgautsi
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.M.); (N.M.)
| | - Pontsho Moela
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.M.); (N.M.)
| |
Collapse
|
40
|
Chen R, Fang T, Liu N, Shi X, Wang J, Yu H. Transglutaminase 3 suppresses proliferation and cisplatin resistance of cervical cancer cells by inactivation of the PI3K/AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2269-2280. [PMID: 37812238 DOI: 10.1007/s00210-023-02757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Recent studies have shown that dysregulation of transglutaminase 3 (TGM3) is related to the aggressive progression of several cancer types. Our study aimed to determine the function of TGM3 in cervical cancer (CC) tumorigenesis. Gene expression profiles GSE63514, GSE9750, GSE46857 and GSE67522 were obtained from the Gene Expression Omnibus (GEO) database. Overlapping differential expressed genes (DEGs) in CC were screened using GEO2R online tool and Venn diagram software. The Kaplan-Meier plotter was used to determine overall survival. TGM3 expression was analyzed based on GEO and The Cancer Genome Atlas (TCGA) databases, qRT-PCR and western blot analyses. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. The half-maximal inhibitory concentration (IC50) value of cisplatin and cell apoptosis was assessed by CCK-8 and TUNEL assays, respectively. P-glycoprotein (P-gp) expression and the changes of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway were examined using western blot analysis. We identified 3 overlapping DEGs, including TGM3, glutathione peroxidase 3 (GPX3), and alpha B-crystallin (CRYAB), which were downregulated in CC tissues. TGM3 expression was reduced in CC cells and related to the poor prognosis of CC patients. TGM3 overexpression retarded the proliferation, reduced IC50 value of cisplatin, accelerated cisplatin-induced apoptosis, and inhibited cisplatin-induced P-gp level in CC cells. Furthermore, TGM3 overexpression suppressed the PI3K/Akt pathway in CC cells. Moreover, treatment with 740Y-P, a PI3K activator, abolished the effect of TGM3 overexpression on proliferation and cisplatin resistance in CC cells. In conclusion, overexpression of TGM3 suppressed proliferation and cisplatin resistance in CC cells by blocking the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruipu Chen
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China.
| | - Tingyu Fang
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Na Liu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Xuejiao Shi
- Department of Nursing, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Junsen Wang
- Department of Operating, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Huaping Yu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| |
Collapse
|
41
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
42
|
Yang Y, Ye G, Qiu X. 3D sponge loaded with cisplatin-CS-calcium alginate MPs utilized as a void-filling prosthesis for the efficient postoperative prevention of tumor recurrence and metastasis. RSC Adv 2024; 14:7517-7527. [PMID: 38440275 PMCID: PMC10910265 DOI: 10.1039/d3ra07516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Intraoperative bleeding is a pivotal factor in the initiation of early recurrence and tumor metastasis following breast cancer excision. Distinct advantages are conferred upon postoperative breast cancer treatment through the utilization of locally administered implant therapies. This study devised a novel 3D sponge implant containing cisplatin-loaded chitosan-calcium alginate MPs capable of exerting combined chemotherapy and hemostasis effects. This innovative local drug-delivery implant absorbed blood and residual tumor cells post-tumor resection. Furthermore, the cisplatin-loaded chitosan-calcium alginate MPs sustainably targeted and eliminated cancer cells, thereby diminishing the risk of local recurrence and distant metastasis. This hydrogel material can also contribute to breast reconstruction, indicating the potential application of the 3D sponge in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Yihong Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| | - Genlan Ye
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| |
Collapse
|
43
|
Padovani BN, Morales Fénero C, Paredes LC, do Amaral MA, Domínguez-Amorocho O, Cipelli M, Gomes JMM, da Silva EM, Silva LM, Vieira RDS, Pereira MT, Cruz MC, Câmara NOS. Cisplatin Toxicity Causes Neutrophil-Mediated Inflammation in Zebrafish Larvae. Int J Mol Sci 2024; 25:2363. [PMID: 38397041 PMCID: PMC10889180 DOI: 10.3390/ijms25042363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Cisplatin is an antineoplastic agent used to treat various tumors. In mammals, it can cause nephrotoxicity, tissue damage, and inflammation. The release of inflammatory mediators leads to the recruitment and infiltration of immune cells, particularly neutrophils, at the site of inflammation. Cisplatin is often used as an inducer of acute kidney injury (AKI) in experimental models, including zebrafish (Danio rerio), due to its accumulation in kidney cells. Current protocols in larval zebrafish focus on studying its effect as an AKI inducer but ignore other systematic outcomes. In this study, cisplatin was added directly to the embryonic medium to assess its toxicity and impact on systemic inflammation using locomotor activity analysis, qPCR, microscopy, and flow cytometry. Our data showed that larvae exposed to cisplatin at 7 days post-fertilization (dpf) displayed dose-dependent mortality and morphological changes, leading to a decrease in locomotion speed at 9 dpf. The expression of pro-inflammatory cytokines such as interleukin (il)-12, il6, and il8 increased after 48 h of cisplatin exposure. Furthermore, while a decrease in the number of neutrophils was observed in the glomerular region of the pronephros, there was an increase in neutrophils throughout the entire animal after 48 h of cisplatin exposure. We demonstrate that cisplatin can have systemic effects in zebrafish larvae, including morphological and locomotory defects, increased inflammatory cytokines, and migration of neutrophils from the hematopoietic niche to other parts of the body. Therefore, this protocol can be used to induce systemic inflammation in zebrafish larvae for studying new therapies or mechanisms of action involving neutrophils.
Collapse
Affiliation(s)
- Barbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Camila Morales Fénero
- Department of Microbiology and Environmental Toxicology, Biomedical Sciences, University of California Santa, Santa Cruz, CA 95064, USA
| | - Lais Cavalieri Paredes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Mariana Abrantes do Amaral
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04023062, Brazil; (M.A.d.A.); (E.M.d.S.)
| | - Omar Domínguez-Amorocho
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Marcella Cipelli
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | | | - Eloisa Martins da Silva
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04023062, Brazil; (M.A.d.A.); (E.M.d.S.)
| | - Luísa Menezes Silva
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Raquel de Souza Vieira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Mariana Tominaga Pereira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Mario Costa Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil; (B.N.P.); (L.C.P.); (O.D.-A.); (M.C.); (L.M.S.); (R.d.S.V.); (M.T.P.); (M.C.C.)
| |
Collapse
|
44
|
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A, Vakili O. Circular RNAs and cervical cancer: friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal 2024; 22:107. [PMID: 38341592 PMCID: PMC10859032 DOI: 10.1186/s12964-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/β-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
45
|
Wang Y, Lou C, Zhao S, Li B, Zhang Y, Yu Z, Wu F, Chen D, Wu Q. Preparation of polypeptide-metal complexes-coated Hosenkoside A and its inhibitory effect in cervical cancer. Int J Biol Macromol 2024; 259:129177. [PMID: 38176488 DOI: 10.1016/j.ijbiomac.2023.129177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
We reported the anti-cervical cancer effect of proprietary saponin content from seeds of Impatiens balsamina L., Hosenkoside A. Our study found that Hosenkoside A significantly promotes cell apoptosis and cell cycle arrest after administration, exhibiting anti-tumor effects. Then the transcriptome sequencing results after administration showed that Hosenkoside A had a significant inhibitory effect on Histone deacetylase 3 (HDAC3). After sufficient administration time, the inhibition of HDAC3 expression level leads to a significant decrease in lysine acetylation at histone 3 sites 4 and 9, blocking the activation of Signal transducer and activator of transcription 3 (STAT3) and achieving anti-tumor effects. In addition, we encapsulated Hosenkoside A into polypeptide metal complexes (PMC) to form slow-release spheres. This material breaks down in the tumor environment, not only does it solve the problem of low drug solubility, but it also achieves targeted sustained-release drug delivery. Under the same concentration of stimulation, the PMC complex group showed better anti-tumor effects in both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Yiwen Wang
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Chen Lou
- Wenzhou Medical University, Wenzhou 325060, China
| | - Siyuan Zhao
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Binfen Li
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Youli Zhang
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Zhecheng Yu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Fangfang Wu
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Daqing Chen
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China.
| | - Qian Wu
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China.
| |
Collapse
|
46
|
Li J, Chen S, Wu J, Liu X, Liu H, Liu Y, Zhu Z. Pathogenomics model for personalized medicine in cervical cancer: Cross-talk of gene expressions and pathological images related to oxidative stress. ENVIRONMENTAL TOXICOLOGY 2024; 39:751-767. [PMID: 37755325 DOI: 10.1002/tox.23974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
An increasing number of studies have shown that oxidative stress plays an important role in the development and progression of cancer. Cervical cancer (CC) is a disease of unique complexity that tends to exhibit high heterogeneity in molecular phenotypes. We aim here to characterize molecular features of cervical cancer by developing a classification system based on oxidative stress-related gene expression profiles. In this study, we obtained gene expression profiling data for cervical cancer from the TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) (GSE44001) databases. Oxidative stress-related genes used for clustering were obtained from GeneCards. Patients with cervical cancer were divided into two subtypes (C1 and C2) by non-negative matrix factorization (NMF) classification. By performing Kaplan-Meier survival analysis, differential expression analysis, and gene set enrichment analysis (GSEA) between the two subtypes, we found that subtype C2 had a worse prognosis and was highly enriched for immune-related pathways as well as epithelial-mesenchymal transition (EMT) pathways. Subsequently, we performed metabolic pathway analysis, gene mutation landscape analysis, immune microenvironment analysis, immunotherapy response analysis, and drug sensitivity analysis of the two isoforms. The results showed that the isoforms were significantly different between metabolic pathway enrichment and the immune microenvironment, and the chromosomes of subtype C1 were more unstable. In addition, we found that subtype C2 tends to respond to treatment with anti-CTLA4 agents, a conclusion that coincides with high chromosomal variation in C1, as well as C2 enrichment of immune-related pathways. Then, we screened 10 agents that were significantly susceptible to C2 subtype. Finally, we constructed pathogenomics models based on pathological features and linked them to molecular subtypes. This study establishes a novel CC classification based on gene expression profiles of oxidative stress-related genes and elucidates differences between immune microenvironments between CC subtypes, contributing to subtype-specific immunotherapy and drug therapy.
Collapse
Affiliation(s)
- Jiaqi Li
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Siyi Chen
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Junsong Wu
- Department of Critical Care Medicine, Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Xuefeng Liu
- Department of Anorectal, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- The Third Clinical Department, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hejing Liu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuedong Liu
- Department of Anorectal, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- The Third Clinical Department, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhuoying Zhu
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
47
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
48
|
Eksteen C, Riedemann J, Rass AM, du Plessis M, Botha MH, van der Merwe FH, Engelbrecht AM. A Review: Genetic Mutations as a Key to Unlocking Drug Resistance in Cervical Cancer. Cancer Control 2024; 31:10732748241261539. [PMID: 38881031 PMCID: PMC11181891 DOI: 10.1177/10732748241261539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Cervical cancer is the fourth most common cancer in women. Advanced stage and metastatic disease are often associated with poor clinical outcomes. This substantiates the absolute necessity for high-throughput diagnostic and treatment platforms that are patient and tumour specific. Cervical cancer treatment constitutes multimodal intervention. Systemic treatments such as chemotherapy and/or focal radiotherapy are typically applied as neoadjuvant and/or adjuvant strategies. Cisplatin constitutes an integral part of standard cervical cancer treatment approaches. However, despite initial patient response, de novo or delayed/acquired treatment resistance is often reported, and toxicity is of concern. Chemotherapy resistance is associated with major alterations in genomic, metabolomic, epigenetic and proteomic landscapes. This results in imbalanced homeostasis associated with pro-oncogenic and proliferative survival, anti-apoptotic benefits, and enhanced DNA damage repair processes. Although significant developments in cancer diagnoses and treatment have been made over the last two decades, drug resistance remains a major obstacle to overcome.
Collapse
Affiliation(s)
- Carla Eksteen
- CancerCare, Cape Gate Oncology Centre, Cape Town, South Africa
| | | | - Atarah M Rass
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Manisha du Plessis
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Matthys H Botha
- Department of Obstetrics and Gynecology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
49
|
Marima R, Mosoane B, Mtshali N, Basera A, Kgatle M, Grech G, Dlamini Z. Mechanisms of chemotherapy resistance in cervical cancer. STRATEGIES FOR OVERCOMING CHEMOTHERAPY RESISTANCE IN CERVICAL CANCER 2024:53-70. [DOI: 10.1016/b978-0-443-28985-9.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Nadile M, Kornel A, Sze NSK, Tsiani E. A Comprehensive Review of Genistein's Effects in Preclinical Models of Cervical Cancer. Cancers (Basel) 2023; 16:35. [PMID: 38201463 PMCID: PMC10778482 DOI: 10.3390/cancers16010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cervical cancer is associated with persistent Human Papilloma Virus (HPV) infections and is the fourth most common cancer in women worldwide. Current treatment options; surgery, chemotherapy, and radiation, are often associated with severe side effects including possible infertility. Novel treatment options are required to help combat this disease and reduce side effects. Many plant-derived chemicals, including paclitaxel and docetaxel, are already in use as treatments for various cancers. Genistein is a polyphenolic isoflavone found in foods including soybeans and legumes, and studies have shown that it has various biological effects and anti-cancer properties. This review aims to summarize the existing studies examining the effects of genistein on cervical cancer. All relevant in vitro and in vivo studies are summarized, and the key findings are highlighted in the associated tables. Based on the available in vitro/cell culture studies reported here, genistein inhibits cervical cancer cell proliferation and induces apoptosis. Use of genistein in combination with radiation or chemotherapy agents resulted in enhanced response indicating radio- and chemo-sensitization properties. More animal studies are required to examine the effectiveness of genistein in vivo. Such studies will form the basis for future human studies exploring the potential of genistein to be used in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Matteo Nadile
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Newman Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|