1
|
Jomard A, Osto E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med 2020; 7:39. [PMID: 32296714 PMCID: PMC7136892 DOI: 10.3389/fcvm.2020.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
High Density Lipoproteins (HDLs) have long been considered as “good cholesterol,” beneficial to the whole body and, in particular, to cardio-vascular health. However, HDLs are complex particles that undergoes dynamic remodeling through interactions with various enzymes and tissues throughout their life cycle, making the complete understanding of its functions and roles more complicated than initially expected. In this review, we explore the novel understanding of HDLs' behavior in health and disease as a multifaceted class of lipoprotein, with different size subclasses, molecular composition, receptor interactions, and functionality. Further, we report on emergent HDL-based therapeutics tested in small and larger scale clinical trials and their mixed successes.
Collapse
Affiliation(s)
- Anne Jomard
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Alamgeer, Asif H, Sandhu MZA, Aziz M, Irfan HM, Moreno KGT, Junior AG. Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis. Curr Pharm Des 2020; 26:2574-2582. [PMID: 32056518 DOI: 10.2174/1381612826666200214161139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.
Collapse
Affiliation(s)
- Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hira Asif
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan,Department of Pharmacy, University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Muhammad Z A Sandhu
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Madiha Aziz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hafiz M Irfan
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Karyne G T Moreno
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
3
|
Kostić T, Deljanin Ilić M, Perišić Z, Milić D, Đorđević M, Golubović M, Koraćević G, Šalinger Martinović S, Ćirić Zdravković S, Živić S, Lazarević M, Stanojević D, Dakić S, Lilić J, Veselinović A. Design and development of novel therapeutics for coronary heart disease treatment based on cholesteryl ester transfer protein inhibition - in silico approach. J Biomol Struct Dyn 2019; 38:2304-2313. [PMID: 31215331 DOI: 10.1080/07391102.2019.1630319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholesteryl ester transfer protein (CETP) belongs to the group of enzymes which inhibition have the application in the treatment of cardiovascular diseases. This study presents QSAR modeling for a set of compounds acting as CETP inhibitors based on the Monte Carlo optimization with SMILES notation and molecular graph-based descriptors, and field-based 3D modeling. A 3D QSAR model was developed for one random split into the training and test sets, whereas conformation independent QSAR models were developed for three random splits, with the results suggesting there is an excellent correlation between them. Various statistical approaches were used to assess the statistical quality of the developed models, including robustness and predictability, and the obtained results were very good. This study used a novel statistical metric known as the index of ideality of correlation for the final assessment of the model, and the results that were obtained suggested that the model was good. Also, molecular fragments which account for the increases and/or decreases of a studied activity were defined and then used for the computer-aided design of new compounds as potential CETP inhibitors. The final assessment of the developed QSAR model and designed inhibitors was done using molecular docking, which revealed an excellent correlation with the results from QSAR modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tomislav Kostić
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | - Marina Deljanin Ilić
- Institute for Cardiovascular Prevention and Rehabilitation Niska Banja, Nis, Serbia
| | - Zoran Perišić
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | - Dragan Milić
- Clinic for Cardiovascular Surgery, Clinical Center Nis, Nis, Serbia
| | - Miodrag Đorđević
- Clinic for Endocrine Surgery and Breast Surgery, Clinical Center Nis, Nis, Serbia
| | - Mladjan Golubović
- Clinic for Anesthesiology and Intensive Care, Clinical Center Nis, Nis, Serbia
| | - Goran Koraćević
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | | | | | - Saša Živić
- Clinic for Cardiovascular Surgery, Clinical Center Nis, Nis, Serbia
| | - Milan Lazarević
- Clinic for Cardiovascular Surgery, Clinical Center Nis, Nis, Serbia
| | | | - Sonja Dakić
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | - Jelena Lilić
- Clinic for Anesthesiology and Intensive Care, Clinical Center Nis, Nis, Serbia
| | | |
Collapse
|
4
|
Hernández-Mijares A, Ascaso JF, Blasco M, Brea Á, Díaz Á, Mantilla T, Pedro-Botet J, Pintó X, Millán J. Residual cardiovascular risk of lipid origin. Components and pathophysiological aspects. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 31:75-88. [PMID: 30262442 DOI: 10.1016/j.arteri.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022]
Abstract
There is no doubt about the relationship between LDL-c and cardiovascular risk, as well as about the benefits of statin treatment. Once the objective of LDL-c has been achieved, the evidences that demonstrate the persistence of a high cardiovascular risk, a concept called residual risk, are notable. The residual risk of lipid origin is based on atherogenic dyslipidemia, characterized by an increase in triglycerides and triglyceride-rich lipoproteins, a decrease in HDL-c and qualitative alterations in LDL particles. The most commonly used measures to identify this dyslipidemia are based on the determination of total cholesterol, triglycerides, HDL, non-HDL cholesterol and remaining cholesterol, as well as apolipoprotein B100 and lipoprotein (a) in certain cases. The treatment of atherogenic dyslipidemia is based on weight loss and physical exercise. Regarding pharmacological treatment, we have no evidence of cardiovascular benefit with drugs aimed at lowering triglycerides and HDL-c, fenofibrate seems to be effective in situations of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Antonio Hernández-Mijares
- Fundación para la Investigación Sanitaria y Biomédica de la Comunidad Valenciana FISABIO, Servicio de Endocrinología y Nutrición, Hospital Universitario Dr. Peset Valencia; Departamento de Medicina, Universitat de València, Valencia, España.
| | - Juan F Ascaso
- Servicio de Endocrinología, Hospital Clínico Universitario; Departamento de Medicina, Universitat de València, Valencia, España
| | - Mariano Blasco
- Área Sanitaria de Delicias, Atención Primaria, Zaragoza, España
| | - Ángel Brea
- Servicio de Medicina Interna, Hospital San Pedro, Logroño, España
| | - Ángel Díaz
- Centro de Salud de Bembibre, Bembibre (León), España
| | - Teresa Mantilla
- Centro de Salud de Prosperidad, Atención Primaria, Madrid, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España
| | - Xavier Pintó
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, Universitat de Barcelona, CIBERobn-ISCIII, Barcelona, España
| | - Jesús Millán
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, España.
| | | |
Collapse
|