1
|
Mayers JR, Varon J, Zhou RR, Daniel-Ivad M, Beaulieu C, Bhosle A, Glasser NR, Lichtenauer FM, Ng J, Vera MP, Huttenhower C, Perrella MA, Clish CB, Zhao SD, Baron RM, Balskus EP. A metabolomics pipeline highlights microbial metabolism in bloodstream infections. Cell 2024; 187:4095-4112.e21. [PMID: 38885650 PMCID: PMC11283678 DOI: 10.1016/j.cell.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.
Collapse
Affiliation(s)
- Jared R Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ruixuan R Zhou
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Martin Daniel-Ivad
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Mayra Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sihai D Zhao
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Mayers JR, Varon J, Zhou RR, Daniel-Ivad M, Beaulieu C, Bholse A, Glasser NR, Lichtenauer FM, Ng J, Vera MP, Huttenhower C, Perrella MA, Clish CB, Zhao SD, Baron RM, Balskus EP. Identification and targeting of microbial putrescine acetylation in bloodstream infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558834. [PMID: 37790300 PMCID: PMC10542159 DOI: 10.1101/2023.09.21.558834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The growth of antimicrobial resistance (AMR) has highlighted an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe bacterial infections profoundly alter host metabolism, prior studies have largely ignored alterations in microbial metabolism in this context. Performing metabolomics on patient and mouse plasma samples, we identify elevated levels of bacterially-derived N-acetylputrescine during gram-negative bloodstream infections (BSI), with higher levels associated with worse clinical outcomes. We discover that SpeG is the bacterial enzyme responsible for acetylating putrescine and show that blocking its activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity enhances bacterial membrane permeability and results in increased intracellular accumulation of antibiotics, allowing us to overcome AMR of clinical isolates both in culture and in vivo. This study highlights how studying pathogen metabolism in the natural context of infection can reveal new therapeutic strategies for addressing challenging infections.
Collapse
Affiliation(s)
- Jared R. Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Ruixuan R. Zhou
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL, USA 61820
| | - Martin Daniel-Ivad
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | | | - Amrisha Bholse
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 02115
| | - Nathaniel R. Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | | | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Mayra Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 02115
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Sihai D. Zhao
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL, USA 61820
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, IL, USA 61820
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA 02138
| |
Collapse
|
3
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
4
|
Le D, Akiyama T, Weiss D, Kim M. Dissociation kinetics of small-molecule inhibitors in Escherichia coli is coupled to physiological state of cells. Commun Biol 2023; 6:223. [PMID: 36841892 PMCID: PMC9968327 DOI: 10.1038/s42003-023-04604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Bioactive small-molecule inhibitors represent a treasure chest for future drugs. In vitro high-throughput screening is a common approach to identify the small-molecule inhibitors that bind tightly to purified targets. Here, we investigate the inhibitor-target binding/unbinding kinetics in E. coli cells using a benzimidazole-derivative DNA inhibitor as a model system. We find that its unbinding rate is not constant but depends on cell growth rate. This dependence is mediated by the cellular activity, forming a feedback loop with the inhibitor's activity. In accordance with this feedback, we find cell-to-cell heterogeneity in inhibitor-target interaction, leading to co-existence of two distinct subpopulations: actively growing cells that dissociate the inhibitors from the targets and non-growing cells that do not. We find similar heterogeneity for other clinical DNA inhibitors. Our studies reveal a mechanism that couples inhibitor-target kinetics to cell physiology and demonstrate the significant effect of this coupling on drug efficacy.
Collapse
Affiliation(s)
- Dai Le
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - David Weiss
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Abstract
The plant Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler is one of the most important medicinal species of the genus Zanthoxylum on the African continent. It is used in the treatment and management of parasitic diseases in sub-Saharan Africa. These properties have inspired scientists to investigate species within the genus for bioactive compounds. However, a study, which details a spectroscopic, spectrometric and bioactivity guided extraction and isolation of antiparasitic compounds from the genus Zanthoxylum is currently non-existent. Tortozanthoxylamide (1), which is a derivative of the known compound armatamide was isolated from Z. zanthoxyloides and the full structure determined using UV, IR, 1D/2D-NMR and high-resolution liquid chromatography tandem mass spectrometry (HRESI-LC-MS) data. When tested against Trypanosoma brucei subsp. brucei, the parasite responsible for animal African trypanosomiasis in sub-Saharan Africa, 1 (IC50 7.78 µM) was just four times less active than the commercially available drug diminazene aceturate (IC50 1.88 µM). Diminazene aceturate is a potent drug for the treatment of animal African trypanosomiasis. Tortozanthoxylamide (1) exhibits a significant antitrypanosomal activity through remarkable alteration of the cell cycle in T. brucei subsp. brucei, but it is selectively non-toxic to mouse macrophages RAW 264.7 cell lines. This suggests that 1 may be considered as a scaffold for the further development of natural antitrypanosomal compounds.
Collapse
|
6
|
Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019; 13:327-343. [PMID: 30705582 PMCID: PMC6342214 DOI: 10.2147/dddt.s190577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial-human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| |
Collapse
|