1
|
Semenova Y, Bjørklund G. Antioxidants and neurodegenerative eye disease. Crit Rev Food Sci Nutr 2024; 64:9672-9690. [PMID: 37312562 DOI: 10.1080/10408398.2023.2215865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative ocular disorders mostly develop with aging and present great complications in the quality of life. Glaucoma and age-related macular degeneration (ARMD) rank as the third and fourth leading causes of blindness and low vision. Oxidative stress is one factor in the pathogenesis of neurodegenerative eye disease. In addition, ocular ischemia and neuroinflammation play an important role. It can be hypothesized that the influence of antioxidants through diet or oral supplementation can counteract the harmful effects of reactive oxygen species accumulated secondary to oxidative stress, ischemia, and inflammation. A range of studies has been published over the past decades focusing on the possible adjuvant effect of antioxidants in ARMD, while there were fewer reports on the potential role of antioxidants in glaucoma. Although certain reports demonstrated positive results, others were discouraging. As there is a controversy between the studies favoring and disfavoring supplementation with different types of antioxidants, it is important to revise the existing evidence on the role of antioxidants in neurodegenerative ocular disorders with a special focus on glaucoma and ARMD.
Collapse
Affiliation(s)
- Yuliya Semenova
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
2
|
Gayathri K, Abhinand P, Gayathri V, Prasanna Lakshmi V, Chamundeeswari D, Jiang L, Tian Z, Malathi N. Computational analysis of phytocompounds in Centella asiatica for its antifibrotic and drug-likeness properties - Herb to drug study. Heliyon 2024; 10:e33762. [PMID: 39027607 PMCID: PMC11255509 DOI: 10.1016/j.heliyon.2024.e33762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Oral submucous fibrosis (OSMF) is a potentially malignant disorder with no permanent cure that affects the quality of life due to trismus. Computational pharmacology has accelerated the discovery of drug candidates for the treatment of incurable diseases. The present study aimed to screen the compounds of the miracle herb Centella asiatica with drug-likeness properties based on the absorption, distribution, metabolism, and excretion (ADME) properties. The pharmacological actions of these screened compounds against OSMF were identified by network pharmacology, gene ontology, pathway enrichment analysis, molecular docking, and simulation. Fifteen drug-like ligands were identified after virtual screening viz; asiatic acid, kaempferol, quercetin, luteolin, apigenin, bayogenin, gallic acid, isothankunic acid, madecassic acid, madasiatic acid, arjunolic acid, terminolic acid, catechin, epicatechin, and nobiletin. 850 potential targets were predicted for the ligands, which were analyzed against 354 proteins associated with OSMF. Compound pathway analysis and disease pathway analysis identified 53 common proteins. The GO enrichment analysis identified 472 biological process terms, 76 molecular function terms, and 44 cellular component terms. Pathway enrichment analysis predicted 142 KEGG pathways, 35 Biocarta pathways, and 236 Reactome pathways for the target proteins. The analysis revealed that the herb targets crucial events of fibrosis such as inflammation, oxidative stress, apoptosis, collagen deposition, and epithelial-mesenchymal transition. The common 53 proteins were used for protein-protein interaction (PPI) network analysis, which revealed 4 key proteins interacting with the phytocompounds viz; transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic-3 (SMAD-3), mitogen-activated protein kinase-1 (MAPK-1) and proto-oncogene tyrosine-protein kinase (SRC). Molecular docking revealed that all ligands had a good binding affinity to the target proteins. Bayogenin had the highest binding affinity towards MAPK-1 (-9.7 kcal/mol), followed by isothankunic acid towards SRC protein (-9.3 kcal/mol). Madasiatic acid had the highest binding affinity to SMAD-3 (-7.6 kcal/mol) and TGF-β1 (-7.1 kcal/mol). Molecular dynamics simulation demonstrated stable ligand protein interactions of bayogenin and MAPK complex, isothankunic acid and SRC complex. This in silico study is the first to identify potential phytochemicals present in Centella asiatica and their target molecules, which might be responsible for reversing OSMF.
Collapse
Affiliation(s)
- K. Gayathri
- Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - P.A. Abhinand
- Department of Bioinformatics, Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India
| | - V. Gayathri
- Centre for Toxicology and Developmental Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - V. Prasanna Lakshmi
- Department of Bioinformatics, Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India
| | - D. Chamundeeswari
- Faculty of Pharmacy, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Li Jiang
- Department of Oral Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Tian
- Department of Oral Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - N. Malathi
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
3
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024:AD.2024.0282. [PMID: 39012676 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Srijan Chatterjee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea
| | - Roshani Rajvansh
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| |
Collapse
|
4
|
Lulli M, Tartaro R, Papucci L, Magnelli L, Kaur IP, Caporossi T, Rizzo S, Mannini A, Giansanti F, Schiavone N. Effects of a human amniotic membrane extract on ARPE-19 cells. Mol Biol Rep 2024; 51:746. [PMID: 38874663 PMCID: PMC11178654 DOI: 10.1007/s11033-024-09647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Human Amniotic Membrane (hAM) is endowed with several biological activities and might be considered an optimal tool in surgical treatment for different ophthalmic pathologies. We pioneered the surgical use of hAM to treat retinal pathologies such as macular holes, tears, and retinal detachments, and to overcome photoreceptor damage in age-related macular degeneration. Although hAM contributed to improved outcomes, the mechanisms of its effects are not yet fully understood. The characterization and explanation of the effects of hAM would allow the adoption of this new natural product in different retinal pathologies, operative contexts, and hAM formulations. At this end, we studied the properties of a hAM extract (hAME) on the ARPE-19 cells. METHODS AND RESULTS A non-denaturing sonication-based technique was developed to obtain a suitable hAME. Viability, proliferation, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) were studied in hAME-treated ARPE-19 cells. The hAME was able to increase ARPE-19 cell viability even in the presence of oxidative stress (H2O2, TBHP). Moreover, hAME prevented the expression of EMT features, such as EMT-related proteins, fibrotic foci formation, and migration induced by different cytokines. CONCLUSIONS Our results demonstrate that the hAME retains most of the properties observed in the whole tissue by others. The hAME, other than providing a manageable research tool, could represent a cost-effective and abundant drug to treat retinal pathologies in the future.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Ruggero Tartaro
- Department of NEUROFARBA, Ophthalmology, University of Florence, Careggi, Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Indu Pal Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Tomaso Caporossi
- Vitreoretinal Surgery Unit, Isola Tiberina Gemelli Isola Hospital, Rome, Italy
- Catholic University Sacro Cuore, Rome, Italy
| | - Stanislao Rizzo
- Department of Ophthalmology, Catholic University of Sacred-Heart Foundation "Policlinico Universitario A. Gemelli" IRCCS, Rome, Italy
| | - Antonella Mannini
- Department of Experimental and Clinical Medicine - Internal Medicine Section, University of Florence, Florence, Italy.
| | - Fabrizio Giansanti
- Department of NEUROFARBA, Ophthalmology, University of Florence, Careggi, Florence, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
5
|
Khil NHS, Sharma S, Sharma PK, Alam MA. Neoteric Role of Quercetin in Visual Disorders. Curr Drug Res Rev 2024; 16:164-174. [PMID: 37608659 DOI: 10.2174/2589977515666230822114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Flavonoids are a family of secondary metabolites found in plants and fungi that exhibit strong antioxidant properties and low toxicity, making them potential candidates for medicinal use. Quercetin, a flavonoid present in various plant-based foods, has gained attention for its numerous biological benefits, including anti-inflammatory, anti-fibrosis, and antioxidant properties. The ocular surface research community has recently focused on quercetin's therapeutic potential for managing ocular diseases, such as dry eye, keratoconus, corneal inflammation, and neovascularization. In this paper, we discuss the role of quercetin for ocular disease prevention, highlighting its fundamental characteristics, common biological properties, and recent applications. By reviewing the latest research conducted in the last 10 years which was focused on novel herbal formulations for ocular diseases, we aim to provide insights into the role of quercetin in managing ocular diseases and offer perspectives on its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Noor Hassan Sulaiman Khil
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
7
|
Annam N, Karlapudi AP, Doble M, Srirama K, T C V. An in silico study on pulmonary fibrosis inhibitors from Tinospora cordifolia and Curcuma longa targeting TGF-β RI. J Biomol Struct Dyn 2023; 41:3145-3161. [PMID: 35068362 DOI: 10.1080/07391102.2022.2029772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Pulmonary fibrosis is characterized by damage to the epithelial cells and alveolar-capillary basement membrane. The increased expression levels of transforming growth factor β (TGF-β) and TGF-β-receptor-1 induced differentiation of lung fibroblasts to myofibroblasts, an alarming sign and considered the hallmark event development of pulmonary fibrosis. In the current study, the stability of phytochemicals of Curcuma longa and Tinospora cordifolia as inhibitors of transforming growth factor β RI (TGF-β RI) were evaluated using molecular docking and molecular dynamics studies. A total of 108 Curcuma longa and 16 Tinospora cordifolia constituents were screened against TGF-β RI as the target. Further, their ADMET properties were evaluated using the pkCSM online server. The compounds tembetarine, magnoflorine from T. cordiolia, and 2-(Hydroxymethyl) anthraquinone and quercetin in C. longa showed significant binding affinities bonding interactions with the target, TGF-β RI, and the study was compared with the known inhibitors from the literature. The MD simulations study also supported that the selected compounds show a close affinity with the binding site and maintained stable behavior throughout the simulation time. The pharmacophore feature analysis of the selected compounds and inhibitors were analyzed using the pharmagist web server, and the common features like H-bond donor and aromatic ring were mapped.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nagalakshmi Annam
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Abraham Peele Karlapudi
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Mukesh Doble
- Bio Engineering and Drug Design Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Krupanidhi Srirama
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Venkateswarulu T C
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| |
Collapse
|
8
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
A pHe sensitive nanodrug for collaborative penetration and inhibition of metastatic tumors. J Control Release 2022; 352:893-908. [PMID: 36370879 DOI: 10.1016/j.jconrel.2022.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Current chemotherapies for metastatic tumors are seriously restricted by limited drug infiltration and deficient disturbance of metastasis-associated complex pathways involving tumor cell autocrine as well as paracrine loops in the microenvironment (TME). Of note, cancer-associated fibroblasts (CAFs) play a predominant role in shaping TME favoring drug resistance and metastasis. Herein, we constructed a tumor extracellular pH (pHe) sensitive methotrexate-chitosan conjugate (MTX-GC-DEAP) and co-assembled it with quercetin (QUE) to achieve co-delivered nanodrugs (MTX-GC-DEAP/QUE). The pHe sensitive protonation and disassembly enabled MTX-GC-DEAP/QUE for stroma-specific delivery of QUE and positive-charged MTX-GC-DEAP molecular conjugates, thereby achieving deep tumor penetration via the combination of QUE-mediated CAF inactivation and adsorption-mediated transcytosis. On the basis of significantly promoted drug availability, a strengthened "omnidirectional" inhibition of pre-metastatic initiation was generated both in vitro and in vivo from the CAF inactivation-mediated reversion of metastasis-promoting environments as well as the inhibition of epithelial-mesenchymal transition, local and blood vessel invasion via QUE-mediated direct regulation on tumor cells. Our tailor-designed versatile nanodrug provides a deep insight into potentiating multi-faceted penetration of multi-mechanism-based regulating agents for intensive metastasis inhibition.
Collapse
|
10
|
Quercetin attenuates adipogenesis and fibrosis in human skeletal muscle. Biochem Biophys Res Commun 2022; 615:24-30. [DOI: 10.1016/j.bbrc.2022.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
|
11
|
Caban M, Lewandowska U. Polyphenols and Posterior Segment Eye Diseases: Effects on Angiogenesis, Invasion, Migration and Epithelial-Mesenchymal Transition. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Igarashi K, Sugimoto K, Hirano E. Placental extract suppresses the formation of fibrotic deposits by tumor necrosis factor alpha and transforming growth factor beta-induced epithelial-mesenchymal transition in ARPE-19 cells. BMC Res Notes 2021; 14:407. [PMID: 34727968 PMCID: PMC8561846 DOI: 10.1186/s13104-021-05824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Epithelial–mesenchymal transition (EMT) is involved in the development of proliferative vitreoretinopathy (PVR) and subsequent fibrosis. Previously, we demonstrated that placental extract ameliorates fibrosis in a mouse model of non-alcoholic steatohepatitis. In this study, we evaluated whether placental extract influences EMT and fibrosis through cytokine-induced EMT in the retinal pigment epithelial cells, in vitro. Results Placental extract did not inhibit EMT, but it suppressed excessive mesenchymal reactions and the subsequent fibrosis. These results suggest that placental extract effectively ameliorates EMT-associated fibrosis in PVR. This beneficial effect could be partially attributed to the suppression of excessive mesenchymal reactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05824-0.
Collapse
Affiliation(s)
- Kyoko Igarashi
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan
| | - Koji Sugimoto
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan
| | - Eiichi Hirano
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan.
| |
Collapse
|
13
|
Park SY, Song WC, Kim B, Oh JW, Park G. Nano-Graphene Oxide-Promoted Epithelial-Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling. NANOMATERIALS 2021; 11:nano11102546. [PMID: 34684987 PMCID: PMC8540736 DOI: 10.3390/nano11102546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Nano-graphene oxide (Nano-GO) is an extensively studied multifunctional carbon nanomaterial with attractive applications in biomedicine and biotechnology. However, few studies have been conducted to assess the epithelial-to-mesenchymal transition (EMT) in the retinal pigment epithelium (RPE). We aimed to determine whether Nano-GO induces EMT by regulating phospholipase D (PLD) signaling in human RPE (ARPE-19) cells. The physicochemical characterization of Nano-GO was performed using a Zetasizer, X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy. RPE cell viability assays were performed, and the migratory effects of RPE cells were evaluated. RPE cell collagen gel contraction was also determined. Intracellular reactive oxygen species (ROS) levels were determined by fluorescence microscopy and flow cytometry. Immunofluorescence staining and western blot analysis were used to detect EMT-related protein expression. Phospholipase D (PLD) enzymatic activities were also measured. Nano-GO significantly enhanced the scratch-healing ability of RPE cells, indicating that the RPE cell migration ability was increased. Following Nano-GO treatment, the RPE cell penetration of the chamber was significantly promoted, suggesting that the migratory ability was strengthened. We also observed collagen gel contraction and the generation of intracellular ROS in RPE cells. The results showed that Nano-GO induced collagen gel contraction and intracellular ROS production in RPE cells. Moreover, immunofluorescence staining and western blot analysis revealed that Nano-GO significantly regulated key molecules of EMT, including epithelial-cadherin, neural-cadherin, α-smooth muscle actin, vimentin, and matrix metalloproteinases (MMP-2 and MMP-9). Interestingly, Nano-GO-induced RPE cell migration and intracellular ROS production were abrogated in PLD-knockdown RPE cells, indicating that PLD activation played a crucial role in the Nano-GO-induced RPE EMT process. We demonstrate for the first time that Nano-GO promotes RPE cell migration through PLD-mediated ROS production. We provide preliminary evidence to support the hypothesis that Nano-GO has adverse health effects related to RPE damage.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (S.Y.P.); (G.P.); Tel.: +82-51-510-3630 (S.Y.P.); +82-51-510-3740 (G.P.); Fax: +82-51-514-7065 (S.Y.P.); +82-51-518-4113 (G.P.)
| | - Woo Chang Song
- Department of Nanofusion Technology, Pusan National University, Busan 46241, Korea; (W.C.S.); (J.-W.O.)
| | - Beomjin Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Jin-Woo Oh
- Department of Nanofusion Technology, Pusan National University, Busan 46241, Korea; (W.C.S.); (J.-W.O.)
| | - Geuntae Park
- Department of Nanofusion Technology, Pusan National University, Busan 46241, Korea; (W.C.S.); (J.-W.O.)
- Correspondence: (S.Y.P.); (G.P.); Tel.: +82-51-510-3630 (S.Y.P.); +82-51-510-3740 (G.P.); Fax: +82-51-514-7065 (S.Y.P.); +82-51-518-4113 (G.P.)
| |
Collapse
|
14
|
Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:658400. [PMID: 33860002 PMCID: PMC8042157 DOI: 10.3389/fcvm.2021.658400] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium occupies a catalog of functions that contribute to the homeostasis of the cardiovascular system. It is a physically active barrier between circulating blood and tissue, a regulator of the vascular tone, a biochemical processor and a modulator of coagulation, inflammation, and immunity. Given these essential roles, it comes to no surprise that endothelial dysfunction is prodromal to chronic age-related diseases of the heart and arteries, globally termed cardiovascular diseases (CVD). An example would be ischemic heart disease (IHD), which is the main cause of death from CVD. We have made phenomenal advances in treating CVD, but the aging endothelium, as it senesces, always seems to out-run the benefits of medical and surgical therapies. Remarkably, many epidemiological studies have detected a correlation between a flavonoid-rich diet and a lower incidence of mortality from CVD. Quercetin, a member of the flavonoid class, is a natural compound ubiquitously found in various food sources such as fruits, vegetables, seeds, nuts, and wine. It has been reported to have a wide range of health promoting effects and has gained significant attention over the years. A growing body of evidence suggests quercetin could lower the risk of IHD by mitigating endothelial dysfunction and its risk factors, such as hypertension, atherosclerosis, accumulation of senescent endothelial cells, and endothelial-mesenchymal transition (EndoMT). In this review, we will explore these pathophysiological cascades and their interrelation with endothelial dysfunction. We will then present the scientific evidence to quercetin's anti-atherosclerotic, anti-hypertensive, senolytic, and anti-EndoMT effects. Finally, we will discuss the prospect for its clinical use in alleviating myocardial ischemic injuries in IHD.
Collapse
Affiliation(s)
- Olina Dagher
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Pauline Mury
- Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Pierre Emmanuel Noly
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Michel Carrier
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
15
|
Zhao L, Wang H, Du X. The therapeutic use of quercetin in ophthalmology: recent applications. Biomed Pharmacother 2021; 137:111371. [PMID: 33561647 DOI: 10.1016/j.biopha.2021.111371] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Quercetin is a natural flavonol antioxidant found in various plant sources and food samples. It is well known for its notable curative effects on the treatment of ophthalmic diseases due to various biological activities, such as antioxidant, anti-inflammatory, and anti-fibrosis activities. This review will discuss the latest developments in therapeutic quercetin for the treatment of keratoconus, Graves' orbitopathy, ocular surface, cataracts, glaucoma, retinoblastoma, and other retinal diseases.
Collapse
Affiliation(s)
- Lianghui Zhao
- Weifang Medical University, Weifang, Shandong 261021, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
16
|
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020; 8:e10136. [PMID: 33150072 PMCID: PMC7583629 DOI: 10.7717/peerj.10136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into potential approaches to prevent PVR.
Collapse
Affiliation(s)
- Hui Zou
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenli Shan
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Ma
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinsong Zhao
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother Res 2020; 34:3148-3167. [PMID: 32881214 PMCID: PMC7461159 DOI: 10.1002/ptr.6794] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID‐19) caused by the novel coronavirus (SARS‐CoV‐2) has rapidly spread across the globe affecting 213 countries or territories with greater than six million confirmed cases and about 0.37 million deaths, with World Health Organization categorizing it as a pandemic. Infected patients present with fever, cough, shortness of breath, and critical cases show acute respiratory infection and multiple organ failure. Likelihood of these severe indications is further enhanced by age as well as underlying comorbidities such as diabetes, cardiovascular, or thoracic problems, as well as due to an immunocompromised state. Currently, curative drugs or vaccines are lacking, and the standard of care is limited to symptom management. Natural products like ginger, turmeric, garlic, onion, cinnamon, lemon, neem, basil, and black pepper have been scientifically proven to have therapeutic benefits against acute respiratory tract infections including pulmonary fibrosis, diffuse alveolar damage, pneumonia, and acute respiratory distress syndrome, as well as associated septic shock, lung and kidney injury, all of which are symptoms associated with COVID‐19 infection. This review highlights the potential of these natural products to serve as home‐based, inexpensive, easily accessible, prophylactic agents against COVID‐19.
Collapse
Affiliation(s)
- Sai Manohar Thota
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Venkatesh Balan
- Engineering Technology Department, College of Technology, University of Houston, Sugar Land, Texas, USA
| | | |
Collapse
|
18
|
Quercetin Inhibits Lef1 and Resensitizes Docetaxel-Resistant Breast Cancer Cells. Molecules 2020; 25:molecules25112576. [PMID: 32492961 PMCID: PMC7321307 DOI: 10.3390/molecules25112576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a major problem for breast cancer patients. Docetaxel is an anti-mitotic agent that serves as first line of treatment in metastatic breast cancer, however it is susceptible to cellular drug resistance. Drug-resistant cells are able to spread during treatment, leading to treatment failure and eventually metastasis, which remains the main cause for cancer-associated death. In previous studies, we used single-cell technologies and identified a set of genes that exhibit increased expression in drug-resistant cells, and they are mainly regulated by Lef1. Furthermore, upregulating Lef1 in parental cells caused them to become drug resistant. Therefore, we hypothesized that inhibiting Lef1 could resensitize cells to docetaxel. Here, we confirmed that Lef1 inhibition, especially on treatment with the small molecule quercetin, decreased the expression of Lef1 and resensitized cells to docetaxel. Our results demonstrate that Lef1 inhibition also downregulated ABCG2, Vim, and Cav1 expression and equally decreased Smad-dependent TGF-β signaling pathway activation. Likewise, these two molecules worked in a synergetic manner, greatly reducing the viability of drug-resistant cells. Prior studies in phase I clinical trials have already shown that quercetin can be safely administered to patients. Therefore, the use of quercetin as an adjuvant treatment in addition to docetaxel for the treatment of breast cancer may be a promising therapeutic approach.
Collapse
|
19
|
Mosca L, Minopoli M, Pagano M, Vitiello F, Carriero MV, Cacciapuoti G, Porcelli M. Effects of S‑adenosyl‑L‑methionine on the invasion and migration of head and neck squamous cancer cells and analysis of the underlying mechanisms. Int J Oncol 2020; 56:1212-1224. [PMID: 32319579 PMCID: PMC7115356 DOI: 10.3892/ijo.2020.5011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
S-Adenosyl-L-methionine (AdoMet) is the principal methyl donor in transmethylation reactions fundamental to sustaining epigenetic modifications. Over the past decade, AdoMet has been extensively investigated for its anti- proliferative, pro-apoptotic and anti-metastatic roles in several types of human cancer. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide, and is an aggressive type of cancer that is associated with a high recurrence rate, metastasis and poor treatment outcomes. The present study demonstrates, for the first time, to the best of our knowledge, that AdoMet induces cell cycle arrest and inhibits the migratory and invasive ability of two different HNSCC cell lines, oral Cal-33 and laryngeal JHU-SCC-011 cells. In both cell lines, AdoMet attenuated cell cycle progression, decreased the protein level of several cyclins and downregulated the expression of p21 cell cycle inhibitor. Moreover, AdoMet was able to inhibit Cal-33 and JHU-SCC-011 cell migration in a dose-dependent manner after 24 and 48 h, respectively, and also induced a significant reduction in the cell invasive ability, as demonstrated by Matrigel invasion assay monitored by the xCELLigence RTCA system. Western blot analysis of several migration and invasion markers confirmed the inhibitory effects exerted by AdoMet on these processes and highlighted AKT, β-catenin and small mothers against decapentaplegic (SMAD) as the main signaling pathways modulated by AdoMet. The present study also demonstrated that the combination of AdoMet and cisplatin synergistically inhibited HNSCC cell migration. Taken together, these findings demonstrate that the physiological compound, AdoMet, affects the motility and extracellular matrix invasive capability in HNSCC. Thus, AdoMet may prove to be a good candidate for future drug development against metastatic cancer.
Collapse
Affiliation(s)
- Laura Mosca
- Dipartimento di Medicina di Precisione, Università della Campania 'Luigi Vanvitelli', I‑80138 Napoli, Italy
| | - Michele Minopoli
- Unità Progressione Neoplastica, Istituto Nazionale Tumori‑IRCCS 'Fondazione G. Pascale', I‑80131 Napoli, Italy
| | - Martina Pagano
- Dipartimento di Medicina di Precisione, Università della Campania 'Luigi Vanvitelli', I‑80138 Napoli, Italy
| | - Francesca Vitiello
- Dipartimento di Medicina di Precisione, Università della Campania 'Luigi Vanvitelli', I‑80138 Napoli, Italy
| | - Maria Vincenza Carriero
- Unità Progressione Neoplastica, Istituto Nazionale Tumori‑IRCCS 'Fondazione G. Pascale', I‑80131 Napoli, Italy
| | - Giovanna Cacciapuoti
- Dipartimento di Medicina di Precisione, Università della Campania 'Luigi Vanvitelli', I‑80138 Napoli, Italy
| | - Marina Porcelli
- Dipartimento di Medicina di Precisione, Università della Campania 'Luigi Vanvitelli', I‑80138 Napoli, Italy
| |
Collapse
|
20
|
Quercetin Inhibits Cell Survival and Metastatic Ability via the EMT-mediated Pathway in Oral Squamous Cell Carcinoma. Molecules 2020; 25:molecules25030757. [PMID: 32050534 PMCID: PMC7037689 DOI: 10.3390/molecules25030757] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate whether quercetin exerts anticancer effects on oral squamous cell carcinoma (OSCC) cell lines and to elucidate its mechanism of action. These anticancer effects in OSCC cells were assessed using an MTT assay, flow cytometry (to assess the cell cycle), wound-healing assay, invasion assay, Western blot analysis, gelatin zymography, and immunofluorescence. To investigate whether quercetin also inhibits transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human keratinocyte cells, HaCaT cells were treated with TGF-β1. Overall, our results strongly suggest that quercetin suppressed the viability of OSCC cells by inducing cell cycle arrest at the G2/M phase. However, quercetin did not affect cell viability of human keratinocytes such as HaCaT (immortal keratinocyte) and nHOK (primary normal human oral keratinocyte) cells. Additionally, quercetin suppresses cell migration through EMT and matrix metalloproteinase (MMP) in OSCC cells and decreases TGF-β1-induced EMT in HaCaT cells. In conclusion, this study is the first, to our knowledge, to demonstrate that quercetin can inhibit the survival and metastatic ability of OSCC cells via the EMT-mediated pathway, specifically Slug. Quercetin may thus provide a novel pharmacological approach for the treatment of OSCCs.
Collapse
|
21
|
Chhipa AS, Borse SP, Baksi R, Lalotra S, Nivsarkar M. Targeting receptors of advanced glycation end products (RAGE): Preventing diabetes induced cancer and diabetic complications. Pathol Res Pract 2019; 215:152643. [PMID: 31564569 DOI: 10.1016/j.prp.2019.152643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022]
|