1
|
Cakil YD, Ozunal ZG, Kayali DG, Aktas RG, Saglam E. Anti-proliferative effects of paroxetine alone or in combination with sorafenib in HepG2 cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
2
|
Zhang CH, Li M, Lin YP, Gao Q. Systemic Therapy for Hepatocellular Carcinoma: Advances and Hopes. Curr Gene Ther 2020; 20:84-99. [PMID: 32600231 DOI: 10.2174/1566523220666200628014530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
The majority of patients with hepatocellular carcinoma (HCC) are diagnosed at an advanced stage that can only benefit from systemic treatments. Although HCC is highly treatmentresistant, significant achievements have been made in the molecular targeted therapy and immunotherapy of HCC. In addition to regorafenib, cabozantinib and ramucirumab were approved for the second- line targeted treatment by the FDA after disease progression on sorafenib. Nivolumab failed to demonstrate remarkable benefit in overall survival (OS) as first-line therapy, while pembrolizumab did not achieve pre-specified statistical significance in both OS and progression-free survival (PFS) as second-line treatment. Combinations of targeted agents, immune checkpoint inhibitors and other interventions showed favorable results. In this review, we summarized the progress of systemic therapy in HCC and discussed the future directions of the treatment of HCC.
Collapse
Affiliation(s)
- Chen-Hao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - You-Pei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Lim LJ, Wong SYS, Huang F, Lim S, Chong SS, Ooi LL, Kon OL, Lee CG. Roles and Regulation of Long Noncoding RNAs in Hepatocellular Carcinoma. Cancer Res 2019; 79:5131-5139. [PMID: 31337653 DOI: 10.1158/0008-5472.can-19-0255] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has uncovered thousands of long noncoding RNAs (lncRNA). Many are reported to be aberrantly expressed in various cancers, including hepatocellular carcinoma (HCC), and play key roles in tumorigenesis. This review provides an in-depth discussion of the oncogenic mechanisms reported to be associated with deregulated HCC-associated lncRNAs. Transcriptional expression of lncRNAs in HCC is modulated through transcription factors, or epigenetically by aberrant histone acetylation or DNA methylation, and posttranscriptionally by lncRNA transcript stability modulated by miRNAs and RNA-binding proteins. Seventy-four deregulated lncRNAs have been identified in HCC, of which, 52 are upregulated. This review maps the oncogenic roles of these deregulated lncRNAs by integrating diverse datasets including clinicopathologic features, affected cancer phenotypes, associated miRNA and/or protein-interacting partners as well as modulated gene/protein expression. Notably, 63 deregulated lncRNAs are significantly associated with clinicopathologic features of HCC. Twenty-three deregulated lncRNAs associated with both tumor and metastatic clinical features were also tumorigenic and prometastatic in experimental models of HCC, and eight of these mapped to known cancer pathways. Fifty-two upregulated lncRNAs exhibit oncogenic properties and are associated with prominent hallmarks of cancer, whereas 22 downregulated lncRNAs have tumor-suppressive properties. Aberrantly expressed lncRNAs in HCC exert pleiotropic effects on miRNAs, mRNAs, and proteins. They affect multiple cancer phenotypes by altering miRNA and mRNA expression and stability, as well as through effects on protein expression, degradation, structure, or interactions with transcriptional regulators. Hence, these insights reveal novel lncRNAs as potential biomarkers and may enable the design of precision therapy for HCC.
Collapse
Affiliation(s)
- Lee Jin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Samuel Y S Wong
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Feiyang Huang
- NUS High School of Math and Science, Singapore, Singapore
| | - Sheng Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Raffles Institution, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - London Lucien Ooi
- Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Oi Lian Kon
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|