1
|
Kim DY, Shin DY, Oh S, Kim I, Kim EJ. Gene Expression and DNA Methylation Profiling Suggest Potential Biomarkers for Azacitidine Resistance in Myelodysplastic Syndrome. Int J Mol Sci 2024; 25:4723. [PMID: 38731939 PMCID: PMC11083267 DOI: 10.3390/ijms25094723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myelodysplastic syndrome/neoplasm (MDS) comprises a group of heterogeneous hematopoietic disorders that present with genetic mutations and/or cytogenetic changes and, in the advanced stage, exhibit wide-ranging gene hypermethylation. Patients with higher-risk MDS are typically treated with repeated cycles of hypomethylating agents, such as azacitidine. However, some patients fail to respond to this therapy, and fewer than 50% show hematologic improvement. In this context, we focused on the potential use of epigenetic data in clinical management to aid in diagnostic and therapeutic decision-making. First, we used the F-36P MDS cell line to establish an azacitidine-resistant F-36P cell line. We performed expression profiling of azacitidine-resistant and parental F-36P cells and used biological and bioinformatics approaches to analyze candidate azacitidine-resistance-related genes and pathways. Eighty candidate genes were identified and found to encode proteins previously linked to cancer, chronic myeloid leukemia, and transcriptional misregulation in cancer. Interestingly, 24 of the candidate genes had promoter methylation patterns that were inversely correlated with azacitidine resistance, suggesting that DNA methylation status may contribute to azacitidine resistance. In particular, the DNA methylation status and/or mRNA expression levels of the four genes (AMER1, HSPA2, NCX1, and TNFRSF10C) may contribute to the clinical effects of azacitidine in MDS. Our study provides information on azacitidine resistance diagnostic genes in MDS patients, which can be of great help in monitoring the effectiveness of treatment in progressing azacitidine treatment for newly diagnosed MDS patients.
Collapse
Affiliation(s)
- Da Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.-Y.S.); (S.O.)
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Somi Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.-Y.S.); (S.O.)
| | - Inho Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.-Y.S.); (S.O.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Eun Ju Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Institute for Molecular Bioscience, The University of Queensland, Carmody Rd., St Lucia, Brisbane, QLD 4072, Australia
- Genomics and Machine Learning Lab, QIMR Berghofer Medical Research Institute, Herston Rd., Herston, Brisbane, QLD 4006, Australia
| |
Collapse
|
2
|
Bouchla A, Thomopoulos TP, Papageorgiou SG, Apostolopoulou C, Loucari C, Mpazani E, Pappa V. Predicting outcome in higher-risk myelodysplastic syndrome patients treated with azacitidine. Epigenomics 2021; 13:1129-1143. [PMID: 34291653 DOI: 10.2217/epi-2021-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
5-Azacitidine (5-AZA) is widely used for the treatment of higher-risk myelodysplastic syndromes. However, response and survival rates vary considerably, while indicated treatment duration remains undefined. For these reasons, factors determining response and survival are of major importance. Clinical, morphological, flow cytometry, cytogenetic and molecular factors are discussed in this review. Biomarkers predictive of response and prognosis, as well as their link to the mode of action of 5-AZA are also addressed, shifting the focus from clinical practice to investigational research. Their use could further improve prognostic classification of 5-AZA treated higher-risk myelodysplastic syndromes in the near future.
Collapse
Affiliation(s)
- Anthi Bouchla
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Thomas P Thomopoulos
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Christina Apostolopoulou
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Constantinos Loucari
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Efthimia Mpazani
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| |
Collapse
|
3
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
4
|
Yang Y, Li J, Geng Y, Liu L, Li D. Azacitidine regulates DNA methylation of GADD45γ in myelodysplastic syndromes. J Clin Lab Anal 2020; 35:e23597. [PMID: 33080073 PMCID: PMC7891504 DOI: 10.1002/jcla.23597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a heterogeneous clonal disease originated from hematopoietic stem cells. Epigenetic studies had demonstrated that DNA methylation and histone acetylation were abnormal in MDS. Azacitidine is an effective drug in the treatment of demethylation. Methods RT‐PCR was performed to determine GADD45γ in 15 MDS clinical samples. Myelodysplastic syndrome cell lines SKM‐1 and HS‐5 were transfected with GADD45γ eukaryotic expression vector and/or GADD45γ shRNA interference plasmid, and treated with azacitidine. Proliferation and apoptosis were examined by CCK‐8 and Western blot analysis to confirm the function role of GADD45γ and azacitidine. The methylation level of GADD45γ gene was detected by bisulfite conversion and PCR. Results This study found that GADD45γ gene was down‐expressed in MDS patients' bone marrow and MDS cell lines, and the down‐regulation of GADD45γ in MDS could inhibit MDS cell apoptosis and promote proliferation. Azacitidine, a demethylation drug, could restore the expression of GADD45γ in MDS cells and inhibit the proliferation of MDS cells by inducing apoptosis, which was related to prognosis and transformation. Conclusion This study indicated that GADD45γ was expected to become a new target of MDS‐targeted therapy. The findings of this study provided a new direction for the research and development of new MDS clinical drugs, and gave a new idea for the development of MDS demethylation drug to realize precise treatment.
Collapse
Affiliation(s)
- Yanli Yang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Jun Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Yinghua Geng
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Dianming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|