1
|
Chen L, Huang D, Jiang L, Yang J, Shi X, Wang R, Li W. A review of botany, phytochemistry, pharmacology, and applications of the herb with the homology of medicine and food: Ligustrum lucidum W.T. Aiton. Front Pharmacol 2024; 15:1330732. [PMID: 38933667 PMCID: PMC11199554 DOI: 10.3389/fphar.2024.1330732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.
Collapse
Affiliation(s)
- Liping Chen
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Dong Huang
- School of Medicine, Tibet University, Lhasa, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
2
|
Systems Network Pharmacology-Based Prediction and Analysis of Potential Targets and Pharmacological Mechanism of Actinidia chinensis Planch. Root Extract for Application in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2116006. [PMID: 36193154 PMCID: PMC9526650 DOI: 10.1155/2022/2116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Traditional Chinese medicine (TCM) sometimes plays a crucial role in advanced cancer treatment. Despite the significant therapeutic efficacy in hepatocellular carcinoma (HCC) that Actinidia chinensis Planch root extract (acRoots) has proven, its complex composition and underlying mechanism have not been fully elucidated. Therefore, this study analyzed the multiple chemical compounds in acRoots and their targets via network pharmacology and bioinformatics analysis, with the overarching goal of revealing the potential mechanisms of the anti-HCC effect. Methods The main ingredients contained in acRoots were initially screened from the traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the candidate bioactive ingredient targets were identified using DrugBank and the UniProt public databases. Second, the biological processes of the targets of active molecules filtered from the ingredients of acRoots were evaluated using gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Third, weighted gene coexpression network analysis (WGCNA) was performed to identify gene coexpression modules associated with HCC. The hub genes of acRoots in HCC were defined via contrasting the above module eigengenes with candidate target genes of acRoots. Furthermore, the target-pathway network was analyzed to explore the mechanism for anti-HCC effect of hub genes. Kaplan–Meier plotter database analysis was performed to validate the hub genes of acRoots correlation with prognostic values in HCC. In order to verify the results of the network pharmacological analysis, we performed a molecular docking approach on the active ingredients and key targets using the Discovery Studio software. The viability of SMMC-7721 and HL-7702 cells was determined by Cell counting kit-8 (CCK-8) after being treated with different concentrations of (+)-catechin (0, 50, 100, 150, 200, and 250 g/ml) for 24, 48, and 72 hours, respectively. Finally, qRT-PCR and Western blot involving human hepatocarcinoma cells were utilized to verify the impact of (+)-catechin on the hub genes associated with prognosis. Results 6 out of 26 active ingredients extracted from TCMSP were deemed as the core ingredients of acRoots. 175 bioactive-ingredient targets of acRoots were obtained and a bioactive-ingredient targets network was established correspondingly. The biological processes (BP) of target genes mainly involved processes, such as toxic substance and wounding. The results of KEGG pathways indicated that the target genes were mainly enriched in pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, and other pathways. Also, the two hub genes (i.e., ESR1 and CAT) were closely associated with the prognosis of HCC patients. As a consequence, we predicated a series of signaling pathways, including estrogen signaling pathway and longevity regulation pathway, through which acRoots could facilitate the treatment for HCC. The molecular docking experiment ascertained that ESR1 and CAT had an effective binding force with (+)-catechin, one of the core ingredients of acRoots. Furthermore, (+)-catechin inhibited SMMC-7721 cell growth in a dose-dependent manner and a time-dependent manner. Finally, we suggest that the expression level of ESR1 and CAT is positively related to the (+)-catechin concentrations in in-vitro experiments. Conclusion The bioactive ingredients of acRoots, including quercetin, (+)-catechin, beta-sitosterol, and aloe-emodin, have synergistic interactions in reinforcing the anticancer effect in HCC. Evidently, acRoots took effect by regulating multitargets and multipathways through its active ingredients. Further, (+)-catechin, the possible paramount anti-HCC active ingredient in acRoots, helped improve the prognosis of HCC patients by increasing the expression of ESR1 and CAT. Additionally, the findings yielded provide a conceptual guidance for the clinical treatment of HCC and the methods adopted are potentially applicable in the future comprehensive analysis of the underlying mechanisms of TCMs.
Collapse
|
4
|
Jin X, Wang H, Liang X, Ru K, Deng X, Gao S, Qiu W, Huai Y, Zhang J, Lai L, Li F, Miao Z, Zhang W, Qian A. Calycosin prevents bone loss induced by hindlimb unloading. NPJ Microgravity 2022; 8:23. [PMID: 35794112 PMCID: PMC9259590 DOI: 10.1038/s41526-022-00210-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss induced by microgravity exposure seriously endangers the astronauts' health, but its countermeasures still have certain limitations. The study aims to find potential protective drugs for the prevention of the microgravity-induced bone loss. Here, we utilized the network pharmacology approach to discover a natural compound calycosin by constructing the compound-target interaction network and analyzing the topological characteristics of the network. Furthermore, the hind limb unloading (HLU) rats' model was conducted to investigate the potential effects of calycosin in the prevention of bone loss induced by microgravity. The results indicated that calycosin treatment group significantly increased the bone mineral density (BMD), ameliorated the microstructure of femoral trabecular bone, the thickness of cortical bone and the biomechanical properties of the bone in rats, compared that in the HLU group. The analysis of bone turnover markers in serum showed that both the bone formation markers and bone resorption markers decreased after calycosin treatment. Moreover, we found that bone remodeling-related cytokines in serum including IFN-γ, IL-6, IL-8, IL-12, IL-4, IL-10 and TNF-α were partly recovered after calycosin treatment compared with HLU group. In conclusion, calycosin partly recovered hind limb unloading-induced bone loss through the regulation of bone remodeling. These results provided the evidence that calycosin might play an important role in maintaining bone mass in HLU rats, indicating its promising application in the treatment of bone loss induced by microgravity.
Collapse
Affiliation(s)
- Xiang Jin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hong Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for toxicological and biological effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xuechao Liang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shuo Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wuxia Qiu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiaqi Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Linbin Lai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fan Li
- Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
6
|
Zhang H, Zhou C, Zhang Z, Yao S, Bian Y, Fu F, Luo H, Li Y, Yan S, Ge Y, Chen Y, Zhan K, Yue M, Du W, Tian K, Jin H, Li X, Tong P, Ruan H, Wu C. Integration of Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanisms of Zhuanggu Busui Formula Against Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:841668. [PMID: 35154014 PMCID: PMC8831245 DOI: 10.3389/fendo.2021.841668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a common skeletal disease, characterized by decreased bone formation and increased bone resorption. As a novel Chinese medicine formula, Zhuanggu Busui formula (ZGBSF) has been proved to be an effective prescription for treating OP in clinic, however, the pharmacological mechanisms underlying the beneficial effects remain obscure. In this study, we explored the pharmacological mechanisms of ZGBSF against OP via network pharmacology analysis coupled with in vivo experimental validation. The results of the network pharmacology analysis showed that a total of 86 active ingredients and 164 targets of ZGBSF associated with OP were retrieved from the corresponding databases, forming an ingredient-target-disease network. The protein-protein interaction (PPI) network manifested that 22 core targets, including Caspase-3, BCL2L1, TP53, Akt1, etc, were hub targets. Moreover, functional enrichment analyses revealed that PI3K-Akt and apoptosis signalings were significantly enriched by multiple targets and served as the targets for in vivo experimental study validation. The results of animal experiments revealed that ZGBSF not only reversed the high expression of Caspase-3, Bax, Prap, and low expression of Bcl-2 in osteoblasts of the OP mouse model but also contributed to the phosphorylation of Akt1 and expression of PI3K, thereby promoting osteogenesis and ameliorating the progression of OP. In conclusion, this study systematically and intuitively illustrated that the possible pharmacological mechanisms of ZGBSF against OP through multiple ingredients, targets, and signalings, and especially the inhibition of the apoptosis and the activation of PI3K-Akt signaling.
Collapse
Affiliation(s)
- Huihao Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Li
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuxin Yan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kunyu Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weibin Du
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Orthopedics, The Affiliated Jiang Nan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Li
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|