1
|
Aldawsari HM, Badr-Eldin SM, Assiri NY, Alhakamy NA, Privitera A, Caraci F, Caruso G. Surface-tailoring of emulsomes for boosting brain delivery of vinpocetine via intranasal route: in vitro optimization and in vivo pharmacokinetic assessment. Drug Deliv 2022; 29:2671-2684. [PMID: 35975309 PMCID: PMC9387308 DOI: 10.1080/10717544.2022.2110996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vinpocetine (VNP), a semisynthetic active pharmaceutical ingredient, is used for oral management of cerebrovascular diseases because of its ability to enhance the blood flow to the brain. However, despite that, the therapeutic application of VNP is restricted due to its reduced bioavailability and diminished brain levels that could be attributed to its low aqueous solubility, short half-life, and presystemic metabolism exposure. Accordingly, the goal of this work was to explore the ability of surface-tailored intranasal emulsomes to boost brain delivery of the drug. A 3221 factorial design was implemented to explore the impact of phospholipid (PL) to solid lipid weight ratio, PL to cholesterol molar ratio, and type of solid lipid on vesicle size, zeta potential, drug entrapment, and release efficiency of the new developed VNP emulsomes. Tailoring of the optimized emulsomal surface formulation was performed using either cationization or PEGylation approaches to boost blood–brain barrier penetration. The pharmacokinetic assessment in rats showed significantly improved bioavailability of VNP emulsomal formulations compared to the oral market product. Additionally, surface-tailored emulsomes exhibited significantly higher brain levels compared to the optimized emulsomes. Based on these findings, the proposed surface-tailored emulsomes could be considered as a promising platform for achieving high brain levels of VNP following intranasal administration.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nourah Y Assiri
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
2
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Alfaifi AA, Heyder RS, Bielski ER, Almuqbil RM, Kavdia M, Gerk PM, da Rocha SRP. Megalin-targeting liposomes for placental drug delivery. J Control Release 2020; 324:366-378. [PMID: 32461116 PMCID: PMC8247794 DOI: 10.1016/j.jconrel.2020.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Every year, complications during pregnancy affect more than 26 million women. Some of those diseases are associated with significant morbidity and mortality, as is the case of preeclampsia, the main cause of maternal deaths globally. The ability to improve the delivery of drugs to the placenta upon administration to the mother may offer new opportunities in the treatment of diseases of pregnancy. The objective of this study was to develop megalin-targeting liposome nanocarriers for placental drug delivery. Megalin is a transmembrane protein involved in clathrin-mediated endocytic processes, and is expressed in the syncytiotrophoblast (SynT), an epithelial layer at maternal-fetal interface. Targeting megalin thus offers an opportunity for the liposomes to hitchhike into the SynT, thus enriching the concentration of any associated therapeutic cargo in the placental tissue. PEGylated (2 KDa) lipids were modified with gentamicin (GM), a substrate to megalin receptors as we have shown in earlier studies, and used to prepare placental-targeting liposomes. The ability of the targeting liposomes to enhance accumulation of a fluorescence probe was assessed in an in vivo placental model - timed-pregnant Balb/c mice at gestational day (GD) 18.5. The targeting liposomes containing 10 mol% GM-modified lipids increased the accumulation of the conjugated fluorescence probe in the placenta with a total accumulation of 2.8% of the initial dose, which corresponds to a 94 fold increase in accumulation compared to the free probe (p < .0001), and 2-4 fold accumulation compared to the non-targeting control liposomes (p < .0001), as measured by both tissue extraction assay and ex vivo imaging. Furthermore, confocal images of placental SynT cross-sections show a 3-fold increase of the targeting liposomes compared with the non-targeting liposomes. The rate and extent of uptake of a fluorescent probe encapsulated within targeting liposomes was also probed in an in vitro model of the human placental barrier (polarized BeWo monolayers) using flow cytometry. Targeting liposomes containing 5 mol% GM-modified lipids enhanced the uptake of the probe by 1.5 fold compared to the non-targeting control. An increase to 10 mol% of the modified lipid resulted in further enhancement in uptake, which was 2 fold greater compared to control. In a competition assay, inhibition of the megalin receptors resulted in a significant reduction in uptake of the fluorescence probe encapsulated in GM-modified liposomes compared to the uptake without free inhibitor (p < .0001), implicating the involvement of megalin receptor in the internalization of the liposomes. Taken together, these results demonstrate that megalin-targeted liposomes may offer an opportunity to enhance the delivery of therapeutics to the placenta for the treatment of diseases of pregnancy.
Collapse
Affiliation(s)
- Ali A Alfaifi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America; Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rodrigo S Heyder
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Elizabeth R Bielski
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Phillip M Gerk
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America.
| |
Collapse
|
4
|
Lei Y, Zeng L, Xie S, Fan K, Yu Y, Chen J, Zhang S, Wang Z, Zhong L. Sertraline/ICG-loaded liposome for dual-modality imaging and effective chemo-photothermal combination therapy against metastatic clear cell renal cell carcinoma. Chem Biol Drug Des 2020; 95:320-331. [PMID: 31820570 DOI: 10.1111/cbdd.13652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022]
Abstract
A large number of chemotherapeutic drugs, utilized in the treatment of advanced metastatic clear cell renal cell carcinoma, are typically prone to poor biocompatibility, lack of targeting specificity, and high toxicity, which mostly leads to unsatisfactory clinical outcomes. As a new drug delivery pathway, nanoliposomes have the advantages of simplifying metabolism, reducing drug side-effects, and providing specific targeting, which can potentially improve the therapeutic effect toward tumor therapy. In this study, a clinically integrated nanoliposome containing Sertraline Hydrochloride and indocyanine green (ICG), here named as Ser/ICG@Lip, was successfully synthesized by film-dispersion and hydration-sonication methods. The photoacoustic imaging and near-infrared fluorescence imaging capabilities of this novel nanoliposome were validated in vitro. The high encapsulation rate of Sertraline Hydrochloride and ICG ensured the safety and therapeutic efficacy of the particle. Moreover, our results suggest that chemo-photothermal combination therapy can be more effective than single photothermal or chemotherapy treatments against malignant tumor cells. This is the first study introducing Sertraline Hydrochloride as a liposome-encapsulated chemotherapeutic agent, containing photothermal capabilities, for the treatment of metastatic renal clear cell cancer cells. This novel drug system has potential to evolve into an alternate treatment method for metastatic clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Yuting Lei
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuqing Xie
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kui Fan
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Yu
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwei Chen
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siliang Zhang
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Li C, Wei YS, Wen P, Feng K, Zong MH, Wu H. Preparation and characterization of an electrospun colon-specific delivery system for salmon calcitonin. RSC Adv 2018; 8:9762-9769. [PMID: 35540827 PMCID: PMC9078742 DOI: 10.1039/c8ra00385h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/03/2018] [Indexed: 11/22/2022] Open
Abstract
A novel electrospun colon-specific delivery system for salmon calcitonin (SCT) was developed to improve its stability and bioavailability. Firstly, the pectin-coated SCT liposomes were prepared by film dispersion method and then a liposomes/sodium alginate/polyvinyl alcohol fiber mat was fabricated by electrospining. Scanning electron microscopy analysis indicated that the obtained nanofibers were uniform and smooth with an average diameter of about 350 nm. The release of SCT in different simulated digestive fluids was studied and corresponding release kinetics models were built. It was found that the fiber mat containing pectin-coated SCT liposomes had better stability and colon-specific properties compared with that containing uncoated SCT liposomes and the release of SCT in the colon followed the case II transport mechanism. In addition, there is no significant change in the bioactivity of released SCT measured by ELISA. This study shows that the electrospun colon-specific fiber mat is a potential delivery system for bioactive peptides. The electrospun colon-specific fiber mat is a promising delivery system for SCT.![]()
Collapse
Affiliation(s)
- Chen Li
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yun-shan Wei
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Peng Wen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Kun Feng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Min-hua Zong
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hong Wu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| |
Collapse
|
6
|
Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol 2016; 54:1046-1077. [PMID: 26801191 DOI: 10.1007/s12035-015-9672-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Collapse
|