1
|
Sharma A, Kulkarni R, Sane H, Awad N, Bopardikar A, Joshi A, Baweja S, Joshi M, Vishwanathan C, Gokulchandran N, Badhe P, Khan M, Paranjape A, Kulkarni P, Methal AK. Phase 1 clinical trial for intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in patients with moderate COVID-19 virus pneumonia: results of stage 1 of the study. AMERICAN JOURNAL OF STEM CELLS 2022; 11:37-55. [PMID: 35873716 PMCID: PMC9301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Mesenchymal stem cells can serve as a therapeutic option for COVID-19. Their immunomodulatory and anti-inflammatory properties can regulate the exaggerated inflammatory response and promote recovery of lung damage. METHOD Phase-1, single-centre open-label, prospective clinical trial was conducted to evaluate the safety and efficacy of intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in moderate COVID-19. The study was done in 2 stages with total 20 patients. Herein, the results of stage 1 including first 10 patients receiving 100 million cells on day 1 and 4 with a follow up of 6 months have been discussed. RESULTS No adverse events were recorded immediately after the administration of MSCs or on follow up. There was no deterioration observed in clinical, laboratory and radiological parameters. All symptoms of the study group resolved within 10 days. Levels of inflammatory biomarkers such as NLR, CRP, IL6, ferritin and D-dimer improved in all patients after intervention along with improved oxygenation demonstrated by improvement in the SpO2/FiO2 ratio and PaO2/FiO2 ratio. None of the patients progressed to severe stage. 9 out of 10 patients were discharged within 9 days of their admission. Improvements were noted in chest x-ray and chest CT scan scores at day 7 in most patients. No post-covid fibrosis was observed on chest CT 28 days after intervention and Chest X ray after 6 months of the intervention. CONCLUSION Administration of 100 million mesenchymal stem cells in combination with standard treatment was found to be safe and resulted in prevention of the cytokine storm, halting of the disease progression and acceleration of recovery in moderate COVID-19. This clinical trial has been registered with the Clinical Trial Registry- India (CTRI) as CTRI/2020/08/027043. http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=43175.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Neurosurgery, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | | | - Hemangi Sane
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Nilkanth Awad
- Department of Pulmonary Medicine, LTMG Hospital and LTM Medical CollegeSion, Mumbai, Maharashtra, India
| | | | - Anagha Joshi
- Department of Radiology, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Sujata Baweja
- Department of Microbiology, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Mohan Joshi
- Dean, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | | | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Prerna Badhe
- Department of Regenerative Laboratory, NeuroGen Brain and Spine InstituteSeawoods, Navi Maharashtra, India
| | - Mazhar Khan
- Department of Neurosurgery, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Amruta Paranjape
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Pooja Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Arjun K Methal
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Taheri F, Taghizadeh E, Pour MJR, Rostami D, Renani PG, Rastgar-Moghadam A, Hayat SMG. Limb-girdle Muscular Dystrophy and Therapy: Insights into Cell and Gene-based Approaches. Curr Gene Ther 2020; 19:386-394. [PMID: 32067617 DOI: 10.2174/1566523220666200218113526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
The Limb-Girdle Muscular Dystrophies (LGMD) are genetically heterogeneous disorders, responsible for muscle wasting and severe form of dystrophies. Despite the critical developments in the insight and information of pathomechanisms of limb-girdle muscular dystrophy, any definitive treatments do not exist, and current strategies are only based on the improvement of the signs of disorder and to enhance the life quality without resolving an underlying cause. There is a crucial relationship between pharmacological therapy and different consequences; therefore, other treatment strategies will be required. New approaches, such as gene replacement, gene transfer, exon skipping, siRNA knockdown, and anti-myostatin therapy, which can target specific cellular or molecular mechanism of LGMD, could be a promising avenue for the treatment. Recently, genome engineering strategies with a focus on molecular tools such as CRISPR-Cas9 are used to different types of neuromuscular disorders and show the highest potential for clinical translation of these therapies. Thus, recent advancements and challenges in the field will be reviewed in this paper.
Collapse
Affiliation(s)
- Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad J R Pour
- Department of Biology, Faculty of Sciences, Mashhad-Branch, Islamic Azad University, Mashhad, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Pedram G Renani
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Azam Rastgar-Moghadam
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed M G Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|