1
|
Guo W, Lin Q, Li J, Feng X, Zhen S, Mi Y, Zheng Y, Zhang F, Xiao Z, Jiang E, Han M, Wang J, Feng S. Stenotrophomonas maltophilia bacteremia in adult patients with hematological diseases: clinical characteristics and risk factors for 28-day mortality. Microbiol Spectr 2025; 13:e0101124. [PMID: 39611832 PMCID: PMC11705889 DOI: 10.1128/spectrum.01011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024] Open
Abstract
Patients with hematological diseases are at high risk for Stenotrophomonas maltophilia (SM) bacteremia. This study retrospectively analyzed the clinical characteristics and risk factors for 28-day mortality among 140 adult hematological patients diagnosed with SM bacteremia from January 2012 to July 2023. he overall 28-day mortality was 31.43% (44/140), with a median age of 44 years. The median hospital stay before SM bacteremia onset was 25 days, and 69.29% of patients had unresolved neutropenia. All patients had received broad-spectrum antibiotics in the past month, and 69.29% developed breakthrough bacteremia during carbapenem therapy. Independent risk factors for mortality included a Sequential Organ Failure Assessment (SOFA) score ≥5, tigecycline exposure, age ≥60, and pulmonary infection. Patients with ≥2 risk factors were stratified into the high-risk group, with a significantly higher 28-day mortality compared with the low-risk group (56.52% vs 7.04%, P < 0.001). Treatment with trimethoprim-sulfamethoxazole (TMP/SMX) (P = 0.008) or TMP/SMX combined with cefoperazone/sulbactam (CSL) (P = 0.005) was associated with survival benefits among high-risk patients. Overall, SM bacteremia usually occurs in hematological patients with prolonged hospitalization, unresolved neutropenia, and extensive use of broad-spectrum antibiotics, especially carbapenems. Patients with high SOFA scores, advanced age, pulmonary infection, or recent tigecycline exposure are at higher risk of mortality. The preferred treatment is TMP/SMX rather than fluoroquinolones, with combination therapy of TMP/SMX and CSL considered a feasible treatment option.IMPORTANCEThis study, representing the largest cohort of adult hematological patients with SM bacteremia to date, strengthens the validity of existing findings and provides new insights into its clinical management. We identify risk factors for 28-day mortality, revealing that patients with two or more risk factors experience particularly high mortality rates. This highlights the importance of early identification and targeted management of high-risk individuals. Our findings also demonstrate that TMP/SMX is superior to fluoroquinolones and suggest that combining TMP/SMX with CSL may offer additional survival benefits.
Collapse
Affiliation(s)
- Wenjing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qingsong Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaomeng Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Sisi Zhen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
2
|
Sapula SA, Hart BJ, Siderius NL, Amsalu A, Blaikie JM, Venter H. Multidrug-resistant Stenotrophomonas maltophilia in residential aged care facilities: An emerging threat. Microbiologyopen 2024; 13:e1409. [PMID: 38682784 PMCID: PMC11057060 DOI: 10.1002/mbo3.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant (MDR), Gram-negative bacterium intrinsically resistant to beta-lactams, including last-resort carbapenems. As an opportunistic pathogen, it can cause serious healthcare-related infections. This study assesses the prevalence, resistance profiles, and genetic diversity of S. maltophilia isolated from residential aged care facilities (RACFs). RACFs are known for their overuse and often inappropriate use of antibiotics, creating a strong selective environment that favors the development of bacterial resistance. The study was conducted on 73 S. maltophilia isolates recovered from wastewater and facility swab samples obtained from three RACFs and a retirement village. Phenotypic and genotypic assessments of the isolates revealed high carbapenem resistance, exemplifying their intrinsic beta-lactam resistance. Alarmingly, 49.3% (36/73) of the isolates were non-wild type for colistin, with minimum inhibitory concentration values of > 4 mg/L, and 11.0% (8/73) were resistant to trimethoprim-sulfamethoxazole. No resistance mechanisms were detected for either antimicrobial. Genotypic assessment of known lineages revealed isolates clustering with Sm17 and Sm18, lineages not previously reported in Australia, suggesting the potential ongoing spread of MDR S. maltophilia. Lastly, although only a few isolates were biocide tolerant (2.7%, 2/73), their ability to grow in high concentrations (64 mg/L) of triclosan is concerning, as it may be selecting for their survival and continued dissemination.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Department of Medical MicrobiologyUniversity of GondarGondarEthiopia
| | - Jack M. Blaikie
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Nair VV, Smyth HDC. Inhalable Excipient-Free Dry Powder of Tigecycline for the Treatment of Pulmonary Infections. Mol Pharm 2023; 20:4640-4653. [PMID: 37606919 DOI: 10.1021/acs.molpharmaceut.3c00395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Tigecycline (TIG) is a broad-spectrum antibiotic that has been approved for the treatment of a number of complicated infections, including community-acquired bacterial pneumonia. Currently it is available only as an intravenous injection that undergoes rapid chemical degradation and limits the use to in-patient scenarios. The use of TIG as an inhaled dry powder inhaler may offer a promising treatment option for patients with multidrug-resistant respiratory tract infections, such as Stenotrophomonas maltophilia (S. maltophilia). This study explores the feasibility of engineering an inhaled powder formulation of TIG that could administer relevant doses at a wide range of inhalation flow rates while maintaining stability of this labile drug. Using air-jet milling, micronized TIG had excellent aerosolization efficiency, with over 80% of the device emitted dose being within the respirable range. TIG was also readily dispersed using different inhaler devices even when tested at different pressure drops and flow rates. Additionally, micronized TIG was stable for 6 months at 25 °C/60% RH and 40 °C/75% RH. Micronized TIG maintained a low minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of 0.8 μM and >0.5 μM, respectively in S. maltophilia cultures in vitro. These results strongly suggest that the micronization of TIG results in a stable and respirable formulation that can be delivered via the pulmonary route for the treatment of lung infections.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, Texas 78712, United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Gómara-Lomero M, López-Calleja AI, Rezusta A, Aínsa JA, Ramón-García S. In vitro synergy screens of FDA-approved drugs reveal novel zidovudine- and azithromycin-based combinations with last-line antibiotics against Klebsiella pneumoniae. Sci Rep 2023; 13:14429. [PMID: 37660210 PMCID: PMC10475115 DOI: 10.1038/s41598-023-39647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2023] [Indexed: 09/04/2023] Open
Abstract
Treatment of infections caused by multi-drug resistant (MDR) enterobacteria remains challenging due to the limited therapeutic options available. Drug repurposing could accelerate the development of new urgently needed successful interventions. This work aimed to identify and characterise novel drug combinations against Klebsiella pneumoniae based on the concepts of synergy and drug repurposing. We first performed a semi-qualitative high-throughput synergy screen (sHTSS) with tigecycline, colistin and fosfomycin (last-line antibiotics against MDR Enterobacteriaceae) against a FDA-library containing 1430 clinically approved drugs; a total of 109 compounds potentiated any of the last-line antibiotics. Selected hits were further validated by secondary checkerboard (CBA) and time-kill (TKA) assays, obtaining 15.09% and 65.85% confirmation rates, respectively. Accordingly, TKA were used for synergy classification based on determination of bactericidal activities at 8, 24 and 48 h, selecting 27 combinations against K. pneumoniae. Among them, zidovudine or azithromycin combinations with last-line antibiotics were further evaluated by TKA against a panel of 12 MDR/XDR K. pneumoniae strains, and their activities confronted with those clinical combinations currently used for MDR enterobacteria treatment; these combinations showed better bactericidal activities than usual treatments without added cytotoxicity. Our studies show that sHTSS paired to TKA are powerful tools for the identification and characterisation of novel synergistic drug combinations against K. pneumoniae. Further pre-clinical studies might support the translational potential of zidovudine- and azithromycin-based combinations for the treatment of these infections.
Collapse
Affiliation(s)
- Marta Gómara-Lomero
- Department of Microbiology. Faculty of Medicine, University of Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Spain.
| | | | - Antonio Rezusta
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - José Antonio Aínsa
- Department of Microbiology. Faculty of Medicine, University of Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Spain
- CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain
| | - Santiago Ramón-García
- Department of Microbiology. Faculty of Medicine, University of Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Spain.
- CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
- Research and Development Agency of Aragon (ARAID) Foundation, Zaragoza, Spain.
| |
Collapse
|
5
|
Sameni F, Hajikhani B, Hashemi A, Owlia P, Niakan M, Dadashi M. The Relationship between the Biofilm Genes and Antibiotic Resistance in Stenotrophomonas maltophilia. Int J Microbiol 2023; 2023:8873948. [PMID: 37692920 PMCID: PMC10484654 DOI: 10.1155/2023/8873948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Today, Stenotrophomonas maltophilia (S. maltophilia) is a major opportunistic pathogen among hospitalized or immunocompromised patients. Antibiotic-resistant clinical isolates are increasing in several parts of the world. Various antibiotic-resistance and biofilm-forming genes are identified in this bacterium. Its capacity to form biofilms is an important virulence factor that may impact antibiotic-resistance patterns. In the current study, we evaluated the biofilm-formation capacity, antibiotic-resistance profile, and prevalence of biofilm-forming genes as well as antibiotic resistance genes among S. maltophilia isolates. Materials and Methods In this cross-sectional study, 94 clinical S. maltophilia isolates were recovered from four tertiary-care hospitals in Iran between 2021 and 2022. The presence of the selected antibiotic-resistance genes and biofilm-forming genes was examined by polymerase chain reaction (PCR). The ability of biofilm formation was examined by microtiter plate assay. The Kirby-Bauer disc diffusion method was used to evaluate the trimethoprim-sulfamethoxazole (TMP-SMX), levofloxacin, and minocycline resistance. Results S. maltophilia is mainly isolated from bloodstream infections. Notably, 98.93% of isolates were biofilm producers, of which 19.35%, 60.22%, and 20.43% produced strong, moderate, and weak biofilm, respectively. The frequency of biofilm genes was 100%, 97.88%, 96.80%, and 75.53% for spgM, rmlA, smf-1, and rpfF, respectively. Isolates with the genotype of smf-1+/rmlA+/spgM+/rpfF+ were mostly strong biofilm producers. Among the antibiotic-resistance genes, the Smqnr, L1, and sul1 had the highest prevalence (76.59%, 72.34%, and 64.89), respectively. Antimicrobial susceptibility evaluation showed 1.06%, 3.19%, and 6.3% resistance to minocycline, TMP-SMX, and levofloxacin. Conclusion The results of the current study demonstrated that S. maltophilia isolates differ in biofilm-forming ability. Moreover, smf-1, rmlA, and spgM genes were presented in all strong biofilm producers. Although the overall resistance rate to the evaluated antibiotics was high, there was no statistically significant relation between antibiotic resistance and the type of biofilm.
Collapse
Affiliation(s)
- Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Owlia
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Niakan
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Ma R, Chen Q, Huang Y, Cheng Z, Wang X, Xia L, Hu L. The Prognosis of Patients Tested Positive for Stenotrophomonas maltophilia from Different Sources. Infect Drug Resist 2023; 16:4779-4787. [PMID: 37520451 PMCID: PMC10377593 DOI: 10.2147/idr.s417151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose The purpose of this study was to analyze the prognosis of patients tested positive for Stenotrophomonas maltophilia (SMA) from different sources. Methods A retrospective study was conducted among 651 patients tested positive for SMA from January 2020 to October 2022 in the First Affiliated Hospital of Anhui Medical University. The patients were divided into seven groups by the source of SMA. Univariate and multivariate analyses were used to identify risk factors for mortality in patients tested positive for SMA from different sources. Results A total of 651 SMA isolates were collected from various sources, including sputum (348 isolates, 53%), bronchoalveolar lavage fluid (52, 8%), abdominal drainage fluid (76, 12%), wound secretion (66, 10%), blood (62, 10%), urine (41, 6%) and cerebrospinal fluid (6, 1%). Compared with other groups, the mortality of the patients in the bronchoalveolar lavage fluid culture group, blood culture group, and abdominal drainage fluid culture group was higher, at 40.38%, 32.26%, and 26.32%, respectively. Multivariate analysis showed that continuous renal replacement therapy was an independent risk factor for mortality in patients with SMA bloodstream infection (P=0.020, OR=6.86), and effective antimicrobial therapy after being positive for S. maltophilia isolates (P=0.002, OR=0.10) was negatively correlated with the death of patients with SMA bloodstream infection. Age ≥65 years (P= 0.043, OR=4.96), kidney disease (P=0.045, OR=4.62) and antifungal agent exposure (P=0.036, OR=5.13) were independent risk factors for mortality in patients with SMA intra-abdominal infection. Antifungal agent exposure (P=0.024, OR=0.51) and glycopeptide exposure (P=0.045, OR=0.53) were independent risk factors for mortality in patients in the sputum culture group. Conclusion SMA has a high rate of antimicrobial resistance and can cause multisite infection. Pulmonary infections, bloodstream infections and abdominal infections caused by SMA have high mortality, and timely standardized treatment can reduce mortality.
Collapse
Affiliation(s)
- Ru Ma
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qiang Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Ying Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhongle Cheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiaowei Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Lingling Xia
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Lifen Hu
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Heidary M, Ebrahimi Samangani A, Kargari A, Kiani Nejad A, Yashmi I, Motahar M, Taki E, Khoshnood S. Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J Clin Lab Anal 2022; 36:e24427. [PMID: 35447019 PMCID: PMC9169196 DOI: 10.1002/jcla.24427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Azithromycin (AZM), sold under the name Zithromax, is classified as a macrolide. It has many benefits due to its immunomodulatory, anti‐inflammatory, and antibacterial effects. This review aims to study different clinical and biochemisterial aspects and properties of this drug which has a priority based on literature published worldwide. Methods Several databases including Web of Science, Google Scholar, PubMed, and Scopus were searched to obtain the relevant studies. Results AZM mechanism of action including the inhibition of bacterial protein synthesis, inhibition of proinflammatory cytokine production, inhibition of neutrophil infestation, and macrophage polarization alteration, gives it the ability to act against a wide range of microorganisms. Resistant organisms are spreading and being developed because of the irrational use of the drug in the case of dose and duration. AZM shows synergistic effects with other drugs against a variety of organisms. This macrolide is considered a valuable antimicrobial agent because of its use as a treatment for a vast range of diseases such as asthma, bronchiolitis, COPD, cystic fibrosis, enteric infections, STIs, and periodontal infections. Conclusions Our study shows an increasing global prevalence of AZM resistance. Thus, synergistic combinations are recommended to treat different pathogens. Moreover, continuous monitoring of AZM resistance by registry centers and the development of more rapid diagnostic assays are urgently needed.
Collapse
Affiliation(s)
- Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Abolfazl Kargari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Aliakbar Kiani Nejad
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ilya Yashmi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moloudsadat Motahar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
8
|
Antimicrobial Susceptibility, Minimum Inhibitory Concentrations, and Clinical Profiles of Stenotrophomonas maltophilia Endophthalmitis. Microorganisms 2021; 9:microorganisms9091840. [PMID: 34576735 PMCID: PMC8467546 DOI: 10.3390/microorganisms9091840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022] Open
Abstract
Stenotrophomonas maltophilia has been reported in various ocular infections, including keratitis, conjunctivitis, preseptal cellulitis, and endophthalmitis, all of which may lead to vision loss. However, the S. maltophilia strain is resistant to a wide variety of antibiotics, including penicillins, third-generation cephalosporins, aminoglycosides, and imipenem. In this study, we retrospectively reviewed the clinical characteristics, antibiotic susceptibility, antimicrobial minimum inhibitory concentrations (MICs), and visual outcomes for S. maltophilia endophthalmitis. The data of 9 patients with positive S. maltophilia cultures in a tertiary referral center from 2010 to 2019 were reviewed. Cataract surgery (n = 8, 89%) was the most common etiology, followed by intravitreal injection (n = 1, 11%). S. maltophilia’s susceptibility to levofloxacin and moxifloxacin was observed in 6 cases (67%). Seven isolates were resistant to sulfamethoxazole-trimethoprim (78%). The MIC90 for S. maltophilia was 256, 256, 256, 8, 12, 12, 12, and 8 μg/mL for amikacin, cefuroxime, ceftazidime, tigecycline, sulfamethoxazole-trimethoprim, levofloxacin, galtifloxacin, and moxifloxacin, respectively. Final visual acuity was 20/200 or better in 5 patients (56%). Fluoroquinolones and tigecycline exhibited low antibiotic MIC90. Therefore, the results suggest that fluoroquinolones can be used as first-line antibiotics for S. maltophilia endophthalmitis.
Collapse
|