1
|
Bin Y, Huang L, Qin J, He M, Zhao S, Huang Y, Zhao J. A Kidney-Targeted Rapid Photoacoustic Probe Activated by Sulfur Dioxide for 3D Visual Diagnosis of Iodinated Contrast-Induced Acute Kidney Injury. Anal Chem 2025. [PMID: 40313201 DOI: 10.1021/acs.analchem.4c07025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Sulfur dioxide (SO2) dysmetabolism is closely associated with various diseases such as acute kidney injury (AKI). Nevertheless, the relationship between SO2 levels and iodinated contrast-induced AKI remains largely unclear. Therefore, accurate imaging of SO2 level fluctuations in vivo is therefore critically important. However, no photoacoustic (PA) imaging method is currently available for the detection of SO2. To address this gap, we designed and synthesized a PA probe toward SO2, namely, Rho-QL, for the first time and performed in situ PA imaging of SO2 in deep tissues in vivo. A novel method was accordingly developed for the 3D visual diagnosis of AKI based on PA imaging of SO2 in kidney tissues with high spatial resolution. Rho-QL exhibited a PA response time of 5 s for SO2 and displayed remarkable turn-on absorption changes at 700 nm, making it a suitable probe for detecting SO2 levels via PA imaging. Moreover, Rho-QL exhibited an excellent targeting ability to the kidney, thereby facilitating in situ imaging of SO2 in the kidney. Notably, through real-time PA imaging, Rho-QL was successfully applied for 3D visualization of the detailed SO2 distribution with high spatial resolution and revealed a remarkable increase in the SO2 levels in the kidney during a contrast-induced AKI process. Based on the current findings, Rho-QL is expected to become a powerful tool for the study and diagnosis of AKI-related diseases.
Collapse
Affiliation(s)
- Yidong Bin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixian Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiangke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Min He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
2
|
Li B, Jiao K, Wang B, Gou H, Chai C, Lu Y, Liu J. Sulfur Dioxide Alleviates Organ Damage and Inflammatory Response in Cecal Ligation and Puncture-Induced Sepsis Rat. Mol Biotechnol 2025; 67:1908-1923. [PMID: 38829503 DOI: 10.1007/s12033-024-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024]
Abstract
The study aimed to elucidate the mechanisms by which sulfur dioxide (SO2) alleviates organ damage during sepsis using RNA-Seq technology. A cecal ligation and puncture (CLP) sepsis model was established in rats, and the effects of SO2 treatment on organ damage were assessed through histopathological examinations. RNA-Seq was performed to analyze differentially expressed genes (DEGs), and subsequent functional annotations and enrichment analyses were conducted. The CLP model successfully induced sepsis symptoms in rats. Histopathological evaluation revealed that SO2 treatment considerably reduced tissue damage across the heart, kidney, liver, and lungs. RNA-Seq identified 950 DEGs between treated and untreated groups, with significant enrichment in genes associated with ribosomal and translational activities, amino acid metabolism, and PI3K-Akt signaling. Furthermore, gene set enrichment analysis (GSEA) showcased enrichments in pathways related to transcriptional regulation, cellular migration, proliferation, and calcium-ion binding. In conclusion, SO2 effectively mitigates multi-organ damage induced by CLP sepsis, potentially through modulating gene expression patterns related to critical biological processes and signaling pathways. These findings highlight the therapeutic promise of SO2 in managing sepsis-induced organ damage.
Collapse
Affiliation(s)
- Bin Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Keping Jiao
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, 73000, Gansu, China
| | - Binsheng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Hongzhong Gou
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Chen Chai
- Department of General Surgery, The People's Hospital of Suzhou New District, Suzhou, 215000, Jiangsu, China
| | - Yan Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 73000, Gansu, China
| | - Jian Liu
- Department of Intensive Care Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, Gansu, China.
- Gansu Province Maternal and Child Health Hospital/Gansu Province Central Hospital, Lanzhou, 73000, Gansu, China.
- , No.1 Donggang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Bai Y, Zou Y, Zeng Y, Hu L, Huang S, Wu K, Yi Q, Chen J, Liang G, Li Y, Huang W, Chen C. Benzylic rearrangement for urinary analysis of guanidino and ureido compounds in cardiac surgery-associated acute kidney injury using high-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9853. [PMID: 38923063 DOI: 10.1002/rcm.9853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
RationaleBecause acute kidney injury (AKI) is closely related to poor prognosis in critically ill patients, developing biomarkers for its prediction and early diagnosis is particularly important. Endogenous guanidino compounds (GCs) and ureido compounds (UCs) can participate in various biochemical processes because of their important physiological activities. The aim of this study was to investigate the alteration profiles of urinary GCs/UCs as potential biomarkers in patients with cardiac surgery–associated acute kidney injury (CSA‐AKI) at different stages.MethodsGCs/UCs were reacted with benzil via benzylic rearrangement, and their derivatives were used to investigate fragmentation mechanisms using tandem mass spectrometry (MS/MS) in positive ion mode. Furthermore, a high‐performance liquid chromatography (HPLC)–MS/MS method was developed to measure the concentrations of GCs/UCs in urine samples taken from patients with CSA‐AKI at different time points.ResultsMS/MS analysis in positive ion mode showed that benzylic GCs/UCs exhibited similar fragmentation processes, which could produce the characteristic ion (C13H12N+) at m/z 182.0. Furthermore, an obviously different fragmentation pattern of benzylic UCs in the positive ion mode might be due to the neutral loss of the H2CO2 group under low collision energy. Of the eight selected GCs/UCs, methylguanidine exhibited significantly increased concentrations in urine when CSA‐AKI occurred, whereas guanidinoethyl sulfonate (GDS), homoarginine (HArg) and homocitrulline (HCit) exhibited decreased concentrations. After recovery from AKI, the urinary concentrations of the aforementioned GCs/UCs returned to normal. Some of the aforementioned metabolites with significant changes (GDS, HArg and HCit) had large areas under the curve in the receiver operating characteristic curve for distinguishing AKI stages on the third day after surgery.ConclusionsIn patients with CSA‐AKI, urinary GCs/UCs were significantly disrupted due to injured kidney, and some GC/UC metabolites exhibited a good ability to become potential biomarkers for AKI stages. The present study provides essential resources and new therapeutic targets for further research on CSA‐AKI.
Collapse
Affiliation(s)
- Yunpeng Bai
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Yuming Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yingjia Zeng
- The Second Clinical Medical School of Kunming Medical University, Kunming, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Sumei Huang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Biological Resource Center of Maoming People's Hospital, Maoming, China
| | - Kunyong Wu
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Biological Resource Center of Maoming People's Hospital, Maoming, China
| | - Qingxia Yi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingchun Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guowu Liang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Yingbang Li
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Wendong Huang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Emergency, Maoming People's Hospital, Maoming, China
| |
Collapse
|
4
|
Jiang S, Hong J, Gong S, Li Q, Feng G. Kidney-Targeted Near-Infrared Fluorescence Probe Reveals That SO 2 Is a Biomarker for Cisplatin-Induced Acute Kidney Injury. Anal Chem 2023; 95:12948-12955. [PMID: 37589130 DOI: 10.1021/acs.analchem.3c02691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
With the widespread use of drugs, drug-induced acute kidney injury (AKI) has become an increasingly serious health concern worldwide. Currently, early diagnosis of drug-induced AKI remains challenging because of the lack of effective biomarkers and noninvasive imaging tools. SO2 plays important physiological roles in living systems and is an important antioxidant for maintaining redox homeostasis. However, the relationship between SO2 (in water as SO32-/HSO3-) and drug-induced AKI remains largely unknown. Herein, we report the highly sensitive near-infrared fluorescence probe DSMN, which for the first time reveals the relationship between SO2 and drug-induced AKI. The probe responds to SO32-/HSO3- selectively and rapidly (within seconds) and shows a significant turn-on fluorescence at 710 nm with a large Stokes shift (125 nm). With these properties, the probe was successfully applied to detect SO2 in living cells and mice. Importantly, the probe can selectively target the kidneys, allowing for the detection of changes in the SO2 concentration in the kidneys. Based on this, DSMN was successfully used to detect cisplatin-induced AKI and revealed an increase in the SO2 levels. The results indicate that SO2 is a new biomarker for AKI and that DSMN is a powerful tool for studying and diagnosing drug-induced AKI.
Collapse
Affiliation(s)
- Siyu Jiang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jiaxin Hong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shengyi Gong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Qianhua Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
5
|
Su WY, Wu DW, Tu HP, Chen SC, Hung CH, Kuo CH. Association between ambient air pollutant interaction with kidney function in a large Taiwanese population study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82341-82352. [PMID: 37328721 DOI: 10.1007/s11356-023-28042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The associations and interactions between kidney function and other air pollutants remain poorly defined. Therefore, the aim of this study was to evaluate associations among air pollutants, including particulate matter (PM) with a diameter ≤ 2.5 μm (PM2.5), PM10 (PM with a diameter ≤ 10 μm), carbon monoxide (CO), nitrogen oxide (NO), nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3) with kidney function, and explore interactions among these air pollutants on kidney function. We used the Taiwan Air Quality Monitoring and Taiwan Biobank databases to derive data on community-dwelling individuals in Taiwan and daily air pollution levels, respectively. We enrolled 26,032 participants. Multivariable analysis showed that high levels of PM2.5, PM10, O3 (all p < 0.001), and SO2 (p = 0.001) and low levels of CO, NO (both p < 0.001), and NOx (p = 0.047) were significantly correlated with low estimated glomerular filtration rate (eGFR). With regard to negative effects, the interactions between PM2.5 and PM10 (p < 0.001), PM2.5 and PM10 (p < 0.001), PM2.5 and SO2, PM10 and O3 (both p = 0.025), PM10 and SO2 (p = 0.001), and O3 and SO2 (p < 0.001) on eGFR were significantly negatively. High PM10, PM2.5, O3, and SO2 were associated with a low eGFR, whereas high CO, NO, and NOx were associated with a high eGFR. Furthermore, negative interactions between PM2.5 and PM10, O3 and SO2, PM10 and O3, PM2.5 and SO2, and PM10 and SO2 on eGFR were observed. The findings of this study have important implications for public health and environmental policy. Specifically, the results of this study may be useful in individuals and organizations to take action to reduce air pollution and promote public health.
Collapse
Affiliation(s)
- Wei-Yu Su
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd, Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd, Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd, Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
6
|
Li Y, Feng Y, Ye X, Peng H, Du J, Yao X, Huang Y, Jin H, Du J. Endogenous SO 2 Controls Cell Apoptosis: The State-of-the-Art. Front Cell Dev Biol 2021; 9:729728. [PMID: 34692686 PMCID: PMC8529009 DOI: 10.3389/fcell.2021.729728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
SO2, previously known as the product of industrial waste, has recently been proven to be a novel gasotransmitter in the cardiovascular system. It is endogenously produced from the metabolism pathway of sulfur-containing amino acids in mammalians. Endogenous SO2 acts as an important controller in the regulation of many biological processes including cardiovascular physiological and pathophysiological events. Recently, the studies on the regulatory effect of endogenous SO2 on cell apoptosis and its pathophysiological significance have attracted great attention. Endogenous SO2 can regulate the apoptosis of vascular smooth muscle cells, endothelial cells, cardiomyocytes, neuron, alveolar macrophages, polymorphonuclear neutrophils and retinal photoreceptor cells, which might be involved in the pathogenesis of hypertension, pulmonary hypertension, myocardial injury, brain injury, acute lung injury, and retinal disease. Therefore, in the present study, we described the current findings on how endogenous SO2 is generated and metabolized, and we summarized its regulatory effects on cell apoptosis, underlying mechanisms, and pathophysiological relevance.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Yingjun Feng
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Xiaoyun Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoli Yao
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| |
Collapse
|