1
|
Emzhik M, Qaribnejad A, Haeri A, Dadashzadeh S. Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern. Pharm Dev Technol 2024; 29:187-211. [PMID: 38369965 DOI: 10.1080/10837450.2024.2320279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.
Collapse
Affiliation(s)
- Marjan Emzhik
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirsajad Qaribnejad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pan L, Yu Z, Liang X, Yao J, Fu Y, He X, Ren X, Chen J, Li X, Lu M, Lan T. Sodium cholate ameliorates nonalcoholic steatohepatitis by activation of FXR signaling. Hepatol Commun 2023; 7:e0039. [PMID: 36706173 PMCID: PMC9988322 DOI: 10.1097/hc9.0000000000000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/25/2022] [Indexed: 01/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has become a major cause of liver transplantation and liver-associated death. The gut-liver axis is a potential therapy for NASH. Sodium cholate (SC) is a choleretic drug whose main component is bile acids and has anti-inflammatory, antifibrotic, and hepatoprotective effects. This study aimed to investigate whether SC exerts anti-NASH effects by the gut-liver axis. Mice were fed with an high-fat and high-cholesterol (HFHC) diet for 20 weeks to induce NASH. Mice were daily intragastric administrated with SC since the 11th week after initiation of HFHC feeding. The toxic effects of SC on normal hepatocytes were determined by CCK8 assay. The lipid accumulation in hepatocytes was virtualized by Oil Red O staining. The mRNA levels of genes were determined by real-time quantitative PCR assay. SC alleviated hepatic injury, abnormal cholesterol synthesis, and hepatic steatosis and improved serum lipid profile in NASH mice. In addition, SC decreased HFHC-induced hepatic inflammatory cell infiltration and collagen deposition. The target protein-protein interaction network was established through Cytoscape software, and NR1H4 [farnesoid x receptor (FXR)] was identified as a potential target gene for SC treatment in NASH mice. SC-activated hepatic FXR and inhibited CYP7A1 expression to reduce the levels of bile acid. In addition, high-dose SC attenuated the abnormal expression of cancer markers in NASH mouse liver. Finally, SC significantly increased the expression of FXR and FGF15 in NASH mouse intestine. Taken together, SC ameliorates steatosis, inflammation, and fibrosis in NASH mice by activating hepatic and intestinal FXR signaling so as to suppress the levels of bile acid in NASH mouse liver and intestine.
Collapse
Affiliation(s)
- Linyu Pan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ze Yu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaolin Liang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiyou Yao
- Department of HBP Surgery II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfang Fu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xu He
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoling Ren
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiajia Chen
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xuejuan Li
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Minqiang Lu
- Department of HBP Surgery II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ren Y, Wu W, Zhang X. The feasibility of oral targeted drug delivery: gut immune to particulates? Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Wang L, Liu Q, Hu X, Zhou C, Ma Y, Wang X, Tang Y, Chen K, Wang X, Liu Y. Enhanced Oral Absorption and Liver Distribution of Polymeric Nanoparticles through Traveling the Enterohepatic Circulation Pathways of Bile Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41712-41725. [PMID: 36069201 DOI: 10.1021/acsami.2c10322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The intestinal epithelium is known to be a main hindrance to oral delivery of nanoparticles. Even though surface ligand modification can enhance cellular uptake of nanoparticles, the "easy entry and hard across" was frequently observed for many active targeting nanoparticles. Here, we fabricated polymeric nanoparticles relayed by bile acid transporters with monomethoxy poly(ethylene glycol)-poly(D,l-lactide) and deoxycholic acid-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) based on structural characteristics of intestine epithelium and the absorption characteristics of endogenous substances. As anticipated, deoxycholic acid-modified polymeric nanoparticles featuring good stability in simulated gastrointestinal fluid could notably promote the internalization of their payload by Caco-2 cells through mediation of apical sodium-dependent bile acid transporter (ASBT) and transmembrane transport of the nanoparticles across Caco-2 cell monolayers via relay-guide of ASBT, ileal bile acid-binding protein, and the heteromeric organic solute transporter (OSTα-OSTβ) along with multidrug resistance-associated protein 3 (MRP3) evidenced by competitive inhibition and fluorescence immunoassay, which was further visually confirmed by the stronger fluorescence from C6-labeled nanoparticles inside enterocytes and the basal side of the intestinal epithelium of mice. The transcellular transport of deoxycholic acid-modified nanoparticles in an intact form was mediated by caveolin/lipid rafts and clathrin with intracellular trafficking trace of endosome-lysosome-ER-Golgi apparatus and bile acid transport route. Furthermore, the increased uptake by HepG2 cells compared with unmodified nanoparticles evidenced the target ability of deoxycholic acid-modified nanoparticles to the liver, which was further supported by ex vivo imaging of excised major organs of mice. Thus, this study provided a feasible and potential strategy to further enhance transepithelial transport efficiency and liver-targeted ability of nanoparticles by means of the specific enterohepatic circulation pathways of bile acid.
Collapse
Affiliation(s)
- Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yining Ma
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoxiao Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yingwei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kanghao Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Liu W, Han Y, Xin X, Chen L, Liu Y, Liu C, Zhang X, Jin M, Jin J, Gao Z, Huang W. Biomimetic and temporal-controlled nanocarriers with ileum transporter targeting for achieving oral administration of chemotherapeutic drugs. J Nanobiotechnology 2022; 20:281. [PMID: 35705976 PMCID: PMC9199201 DOI: 10.1186/s12951-022-01460-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oral chemotherapy is preferred for patients with cancer owing to its multiple advantages, including convenience, better patient compliance, and improved safety. Nevertheless, various physical barriers exist in this route that hamper the development of oral chemotherapeutic formulations, including destruction of drugs in the gastrointestinal tract (GIT), low permeability in enterocytes, and short residence time in the intestine. To overcome these limitations, it is necessary to design an efficient oral drug delivery system with high efficacy and improved safety. RESULTS Herein, we designed novel glycocholic acid (GCA)-functionalized double layer nanoparticles (GCA-NPs), which can act via an endogenous pathway and in a temporally controlled manner in the intestine, to enhance the oral bioavailability of hydrophobic chemotherapeutic drugs such as paclitaxel (PTX). GCA-NPs were composed of quercetin (Qu)-modified liposomes (QL) coated with GCA-chitosan oligosaccharide conjugate (GCOS). The GCA-NPs thus prepared showed prolonged intestinal retention time and good GIT stability due to the presence of chitosan oligosaccharide (COS) and enhanced active transportation via intestinal apical sodium-dependent bile acid transporter (ASBT) due to the presence of GCA. GCA-NPs also efficiently inhibited intestinal P-gp induced by Qu. PTX-loaded GCA-NPs (PTX@GCA-NPs) had a particle size of 84 nm and an entrapment efficiency of 98% with good stability. As a result, the oral bioavailability of PTX was increased 19-fold compared to that of oral Taxol® at the same dose. Oral PTX@GCA-NPs displayed superior antitumor efficacy and better safety than Taxol® when administered intravenously. CONCLUSIONS Our novel drug delivery system showed remarkable efficacy in overcoming multiple limitations and is a promising carrier for oral delivery of multiple drugs, which addresses several challenges in oral delivery in the clinical context.
Collapse
Affiliation(s)
- Wei Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Ying Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xin Xin
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Liqing Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Yanhong Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Chao Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xintong Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Mingji Jin
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Jingzhe Jin
- Department of Oncology, The First Hospital of Dandong City, Dandong, Liaoning 118000 People’s Republic of China
| | - Zhonggao Gao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Wei Huang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| |
Collapse
|
6
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
7
|
Wang X, Ma Q, Wen C, Gong T, Li J, Liang W, Li M, Wang Y, Guo R. Folic acid and deoxycholic acid derivative modified Fe 3O 4 nanoparticles for efficient pH-dependent drug release and multi-targeting against liver cancer cells. RSC Adv 2021; 11:39804-39812. [PMID: 35494148 PMCID: PMC9044570 DOI: 10.1039/d1ra05874f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
The novel nano-drug carrier (FDCA-FA-MNPs) was constructed by grafting formyl deoxycholic acid (FDCA) and folic acid (FA) on the surface of Fe3O4 magnetic nanoparticles (MNPs), possessing the advantages of superparamagnetism, good stability, low cytotoxicity and good blood compatibility. The hydrophobic anti-cancer drug doxorubicin hydrochloride (DOX) was successfully loaded onto FDCA-FA-MNPs through supramolecular interactions (hydrogen bond between FDCA and drug and hydrophobic interaction and π-π stacking between drug and drug). The drug loading amount and drug loading capacity were 509.1 mg g-1 and 33.73 wt%, respectively. In addition, drug release had a pH responsive and controllable release performance, the release rate at pH 5.3 (45.6%) was four times that at pH 7.4 (11.5%), and the tumor microenvironment was favorable for drug release. More importantly, the novel nano-drug carrier combined the hepatocellular targeting of FDCA, the cancer cell targeting of FA, and the magnetic targeting of Fe3O4, showing excellent cancer-killing efficiency (78%) in vitro. Therefore, the nano-drug carrier synthesized in this paper has potential practical application value in the targeted therapy of liver cancer.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 China
| | - Qing Ma
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 China
| | - Chaochao Wen
- Institute of Environmental Science, Department of Chemistry, Shanxi University Taiyuan 030006 China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 China
| | - Jing Li
- Institute of Environmental Science, Department of Chemistry, Shanxi University Taiyuan 030006 China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University Taiyuan 030006 China
| | - Meining Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 China
| | - Yuyao Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 China
| |
Collapse
|
8
|
Mullis AS, Peroutka-Bigus N, Phadke KS, Bellaire BH, Narasimhan B. Nanomedicines to counter microbial barriers and antimicrobial resistance. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Scavo MP, Cutrignelli A, Depalo N, Fanizza E, Laquintana V, Gasparini G, Giannelli G, Denora N. Effectiveness of a Controlled 5-FU Delivery Based on FZD10 Antibody-Conjugated Liposomes in Colorectal Cancer In vitro Models. Pharmaceutics 2020; 12:E650. [PMID: 32664186 PMCID: PMC7408534 DOI: 10.3390/pharmaceutics12070650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The use of controlled delivery therapy in colorectal cancer (CRC) reduces toxicity and side effects. Recently, we have suggested that the Frizzled 10 (FZD10) protein, a cell surface receptor belonging to the FZD protein family that is overexpressed in CRC cells, is a novel candidate for targeting and treatment of CRC. Here, the anticancer effect of novel immuno-liposomes loaded with 5-Fluorouracil (5-FU), decorated with an antibody against FZD10 (anti-FZD10/5-FU/LPs), was evaluated in vitro on two different CRC cell lines, namely metastatic CoLo-205 and nonmetastatic CaCo-2 cells, that were found to overexpress FZD10. The anti-FZD10/5-FU/LPs obtained were extensively characterized and their preclinical therapeutic efficacy was evaluated with the MTS cell proliferation assay based on reduction of tetrazolium compound, scratch test, Field Emission Scanning Electron Microscopes (FE-SEM) investigation and immunofluorescence analysis. The results highlighted that the cytotoxic activity of 5-FU was enhanced when encapsulated in the anti-FZD10 /5-FU/LPs at the lowest tested concentrations, as compared to the free 5-FU counterparts. The immuno-liposomes proposed herein possess a great potential for selective treatment of CRC because, in future clinical applications, they can be encapsulated in gastro-resistant capsules or suppositories for oral or rectal delivery, thereby successfully reaching the intestinal tract in a minimally invasive manner.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. deBellis”, Via Turi 26 Castellana Grotte, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
| | - Elisabetta Fanizza
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
| | | | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “de Bellis”, Via Turi 26 Castellana Grotte, 70125 Bari, Italy;
| | - Nunzio Denora
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
| |
Collapse
|
10
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
11
|
Hydrophobic ion-pairs and lipid-based nanocarrier systems: The perfect match for delivery of BCS class 3 drugs. J Control Release 2019; 304:146-155. [DOI: 10.1016/j.jconrel.2019.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|
12
|
Yin J, Hou Y, Song X, Wang P, Li Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int J Nanomedicine 2019; 14:4045-4057. [PMID: 31213814 PMCID: PMC6549487 DOI: 10.2147/ijn.s210057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Quercetin (QUE) shows a potential antileukemic activity, but possesses poor solubility and low bioavailability. Purpose: This article explored the bile salt transport pathway for oral deliver of QUE using cholate-modified polymer-lipid hybrid nanoparticles (cPLNs) aiming to enhance its antileukemic effect. Methods: QUE-loaded cPLNs (QUE-cPLNs) were developed through a nanoprecipitation technique and characterized by particle size, entrapment efficiency (EE), microscopic morphology and in vitro drug release. In vitro cellular uptake and cytotoxicity of QUE-cPLNs were examined on Caco-2 and P388 cells; in vivo pharmacokinetics and antileukemic effect were evaluated using Sprague Dawley rats and leukemic model mice, respectively. Results: The prepared QUE-cPLNs possessed a particle size of 110 nm around with an EE of 96.22%. QUE-cPLNs resulted in significantly enhanced bioavailability of QUE, up to 375.12% relative to the formulation of suspensions. In addition, QUE-cPLNs exhibited excellent cellular uptake and internalization capability compared to cholate-free QUE-PLNs. The in vitro cytotoxic and in vivo antileukemic effects of QUE-cPLNs were also signally superior to free QUE and QUE-PLNs. Conclusion: These findings indicate that cPLNs are a promising nanocarrier able to improve the oral bioavailability and therapeutic index of QUE.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People's Republic of China
| | - Yantao Hou
- Henan Vocational College of Applied Technology, Kaifeng, People's Republic of China
| | - Xiaoyong Song
- School of Pharmacy, Henan University, Kaifeng, People's Republic of China
| | - Peiqing Wang
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People's Republic of China
| | - Yang Li
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
13
|
Kim T, Park J, Kim TI. Cholic Acid-Conjugated Methylcellulose-Polyethylenimine Nano-Aggregates for Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E459. [PMID: 30893903 PMCID: PMC6474074 DOI: 10.3390/nano9030459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
Cholic acid-conjugated methylcellulose-polyethylenimines (MCPEI-CAs) were synthesized and characterized for drug delivery systems. Their synthesis was confirmed by ¹H NMR and FT-IR analysis. Induced circular dichroism result with Congo red showed that methylcellulose (MC) and polyethylenimine-grafted cationic derivative (MC-PEI) would have helical conformation and random coil structure, respectively. It was found that MCPEI-CAs could form positively charged (>30 mV Zeta-potential) and spherical nano-aggregates (~250 nm Z-average size) by hydrophobic interaction of CA moieties. Critical aggregation concentration of MCPEI-CA10 was measured as 7.2 × 10-3 mg/mL. MCPEI-CA10 could encapsulate the anticancer drug doxorubicin (Dox) with 58.0% of drug loading content and 23.2% of drug loading efficiency and its release was facilitated in acidic condition. Cytotoxicity of MCPEI-CAs was increased with the increase of cholic acid (CA) graft degrees, probably due to the cellular membrane disruption by interaction with specific molecular structure of amphiphilic MCPEI-CA nano-aggregates. MCPEI-CA10/Dox nano-aggregates showed concentration-dependent anticancer activity, which could overcome the multidrug resistance of cancer cells. In this work, molecular conformation change of MC derivatives by chemical modification and a potential of MCPEI-CA10/Dox nano-aggregates for drug delivery systems were revealed.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Jaehong Park
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|