1
|
Garg A, Shah K, Chauhan CS, Agrawal R. Ingenious nanoscale medication delivery system: Nanogel. J Drug Deliv Sci Technol 2024; 92:105289. [DOI: 10.1016/j.jddst.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Pastuch-Gawołek G, Szreder J, Domińska M, Pielok M, Cichy P, Grymel M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023; 15:913. [PMID: 36986774 PMCID: PMC10056414 DOI: 10.3390/pharmaceutics15030913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers' drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Monika Domińska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Piotr Cichy
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
4
|
Wang Y, Jiang G. Advances in the Novel Nanotechnology for the Targeted Tumor Therapy by the Transdermal Drug Delivery. Anticancer Agents Med Chem 2022; 22:2708-2714. [PMID: 35319394 DOI: 10.2174/1871520622666220321093000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Despite modern medicine advances greatly, cancer remains a serious challenge to world health for which effective methods of treatment have hardly been developed yet. However, throughout the recent years, the rapid-developing nanotechnology has provided a new outlook of cancer therapy by transdermal drug delivery. By disrupting the stratum corneum, drugs are delivered through the skin and navigated to the tumor site by drug delivery systems such as nanogels, microneedles, etc. The superiorities include the improvement of drug pharmacokinetics as well as reduced side effects. This paper reviews the reported novel development of transdermal drug delivery systems for targeted cancer therapy. Advanced techniques for penetrating the skin will be discussed as well.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Chi-na
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Chi-na
| |
Collapse
|
5
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
6
|
Zhang M, Yu P, Xie J, Li J. Recent advances of zwitterionic based topological polymers for biomedical applications. J Mater Chem B 2022; 10:2338-2356. [PMID: 35212331 DOI: 10.1039/d1tb02323c] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic polymers, comprising hydrophilic anionic and cationic groups with the same total number of positive and negative charges on the same monomer residue, have received increasing attention due to their...
Collapse
Affiliation(s)
- Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
7
|
Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021; 9:771851. [PMID: 34746113 PMCID: PMC8569621 DOI: 10.3389/fbioe.2021.771851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuting Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Sun R, Fang L, Lv X, Fang J, Wang Y, Chen D, Wang L, Chen J, Qi Y, Tang Z, Zhang J, Tian Y. In vitro and in vivo evaluation of self-assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor. Drug Deliv 2021; 28:2071-2084. [PMID: 34595970 PMCID: PMC8491732 DOI: 10.1080/10717544.2021.1983077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related mortality worldwide. Nowadays, liver-targeting drug delivery system has been proven as a promising strategy for overcoming HCC. Asialoglycoprotein receptor (ASGPR) is an ideal receptor for liver targeting, which is mainly expressed on hepatocytes. In this study, we developed several novel liver-targeting chitosan nanoparticles to selectively overcome HCC via ASGPR. Chitosan nanoparticles (Gly-CS-VE, Gal-Gly-CS-VE, Gly-CS-DCA, and Gal-Gly-CS-DCA) were prepared by grafting hydrophilic group (glycidol, Gly), hydrophobic group (deoxycholic acid, DCA or vitamin E succinate, VE), and ASGPR recognizing group (galactose, Gal). Subsequently, their characterizations were measured by 1H NMR, FT-IR, TEM, and DLS. Doxorubicin (DOX) was loaded in nanoparticles and released out in a pH-dependent manner. Most importantly, the galactosylated Gal-Gly-CS-VE and Gal-Gly-CS-DCA nanoparticles exhibited significantly stronger in vitro cell internalization, cytotoxicity, anti-migration capabilities and in vivo anticancer efficacies than the corresponding Gly-CS-VE and Gly-CS-DCA nanoparticles, as well as free DOX. Finally, the four chitosan nanoparticles exhibited good biocompatibility without causing any obvious histological damage to the major organs. Overall, the galactosylated chitosan nanoparticles were proven to be promising pharmaceutical formulations for selectively overcoming HCC, with great potential for clinical applications.
Collapse
Affiliation(s)
- Rensong Sun
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Fang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Xia Lv
- Collage of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiani Fang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuting Wang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yan Qi
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Jianbin Zhang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Tian
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Mauri E, Giannitelli SM, Trombetta M, Rainer A. Synthesis of Nanogels: Current Trends and Future Outlook. Gels 2021; 7:36. [PMID: 33805279 PMCID: PMC8103252 DOI: 10.3390/gels7020036] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (E.M.); (S.M.G.); (M.T.)
| | - Sara Maria Giannitelli
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (E.M.); (S.M.G.); (M.T.)
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (E.M.); (S.M.G.); (M.T.)
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (E.M.); (S.M.G.); (M.T.)
- Institute of Nanotechnology (NANOTEC), National Research Council, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
10
|
Todorova Z, Tumurbaatar O, Todorova J, Ugrinova I, Koseva N. Phosphorus-containing star-shaped polymer conjugates for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. Int J Pharm 2020; 584:119435. [PMID: 32439585 DOI: 10.1016/j.ijpharm.2020.119435] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Nanogels are currently considered as promising nanosized drug delivery carriers. Nanogels are made of a crosslinked polymeric network which could encapsulate both hydrophilic and hydrophobic drugs due to their tunable nature. The ability of nanogels to control drug release is vastly described in the literature and researchers are consistently improving the control of drug release from nanogel by designing new polymers having specific sensitivity to a chemical or physical stimulus. In this review, we briefly discuss the definition of nanogels, their release profiles, their specific gel-based characteristics and the pathways of dug release from nanogels. We have focused on the stimuli responsive nanogels and their release profile. This compilation opens the window for understanding the influence of chemical composition and design of various nanogel on their release in the presence and absence of corresponding stimuli such as temperature, pH, enzymes and others. The uniqueness of this review is that it highlights the data of release profiles in terms of the different nanogel composition and triggers. It also points the high potential of nanogels in the list of candidates for drug delivery systems, thanks to their properties regarding drug encapsulation and release, combined advantages of nano-size and swelling characteristics of hydrogel.
Collapse
Affiliation(s)
- Shayan Ahmed
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France
| | - Khair Alhareth
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France
| | - Nathalie Mignet
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France.
| |
Collapse
|
12
|
Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm 2020; 582:119346. [PMID: 32315749 DOI: 10.1016/j.ijpharm.2020.119346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
New insights about nanomaterials' biodistribution revealed their ability to achieve tumor accumulation by taking advantage from the dynamic vents occurring in tumor's vasculature. This paradigm-shift emphasizes the importance of extending nanomaterials' blood circulation time to enhance their tumor uptake. The classic strategy to improve nanomaterials' stability during circulation relies on their functionalization with poly(ethylene glycol). However, recent reports have been showing that PEGylated nanomaterials can suffer from the accelerated blood clearance phenomenon, emphasizing the importance of developing novel coatings for functionalizing the nanomaterials. To address this limitation, the modification of natural carriers' surface to enhance their stability appears to be a promising strategy. Herein, sulfobetaine methacrylate (SBMA)-functionalized bovine serum albumin (BSA) was synthesized for the first time to investigate the capacity of this modification to improve the resulting nanoparticles' physicochemical properties, colloidal stability and in vitro performance. This novel polymer was then employed in the formulation of nanoparticles loaded with IR780 for application in breast cancer phototherapy (IR/SBMA-BSA NPs). When compared to their non-functionalized equivalents, the IR/SBMA-BSA NPs presented a neutral surface charge and a higher stability in biologically relevant media. Due to these features, the IR/SBMA-BSA NPs could achieve a 1.9-fold greater uptake by breast cancer cells than IR/BSA NPs. Furthermore, the IR/SBMA-BSA NPs were cytocompatible towards normal cells and reduced breast cancer cells' viability up to 42%. The phototherapy mediated by IR/SBMA-BSA NPs could further decrease cancer cells' viability to about 12%. Overall, the IR/SBMA-BSA NPs have enhanced features that propel their application in breast cancer phototherapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
13
|
Wang J, Xia Y, Liu H, Xia J, Qian M, Zhang L, Chen L, Chen Q. Poly(lactobionamidoethyl methacrylate)-based amphiphiles with ultrasound-labile components in manufacture of drug delivery nanoparticulates for augmented cytotoxic efficacy to hepatocellular carcinoma. J Colloid Interface Sci 2019; 551:1-9. [DOI: 10.1016/j.jcis.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
|
14
|
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019; 19:e1900071. [PMID: 31298803 DOI: 10.1002/mabi.201900071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research CentreDepartment of ScienceWaterford Institute of Technology Cork Road Waterford X91K0EK Republic of Ireland
| |
Collapse
|
15
|
Bhattacharya K, Banerjee SL, Das S, Samanta S, Mandal M, Singha NK. REDOX Responsive Fluorescence Active Glycopolymer Based Nanogel: A Potential Material for Targeted Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2019; 2:2587-2599. [DOI: 10.1021/acsabm.9b00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Burek M, Wandzik I. Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications – 15 Year Overview. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1443122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Małgorzata Burek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
| |
Collapse
|