1
|
Wu Y, Deng S, Wei S, Wei W, He Y, Guo J. Adipocyte-Targeted Nanotechnology and Cell-Based Therapy for Obesity Treatment. ChemMedChem 2025; 20:e202400611. [PMID: 39390653 DOI: 10.1002/cmdc.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases and is often associated with dysfunctional adipocytes. Prevalent treatments such as lifestyle intervention, pharmacotherapy, and bariatric surgery are often accompanied by adverse side effects and poor patient compliance. Nanotechnology and cell-based therapy offer innovative approaches for targeted obesity treatments, as they can directly target adipocytes, regulate lipid metabolism, and minimize off-target effects. Here, we provide an overview of the intricate relationship between adipocytes and obesity, highlighting the potential of nanotechnology and cell-based therapy in obesity treatment. Additionally, we discuss the advancements of adipose-derived mesenchymal stem cells (ADMSCs) in obesity progression, including the latest challenges and considerations for developing adipose-targeted treatments for obesity. The objective is to provide a perspective on the design and development of nanotechnology and cell-based therapy for treating obesity and related comorbidities.
Collapse
Affiliation(s)
- Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Siqi Deng
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Siyu Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenqi Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- State Key Laboratory of Polymer Materials Engineering, Department of Chemical and Biological Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
2
|
Xiao M, Wang Z, Li C, Zhang K, Hou Z, Sun S, Yang L. Recent advances in drug delivery systems based on natural and synthetic polymes for treating obesity. Int J Biol Macromol 2024; 260:129311. [PMID: 38218268 DOI: 10.1016/j.ijbiomac.2024.129311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Obesity stands as a pervasive global public health issue, posing a formidable threat to human well-being as its prevalence continues to surge year by year. Presently, pharmacological treatment remains the favored adjunct strategy for addressing obesity. However, conventional delivery methods suffer from low bioavailability and the potential for side effects, underscoring the pressing need for more efficient and targeted delivery approaches. Recent research has delved extensively into emerging drug delivery systems employing polymers as carriers, with numerous preclinical studies contributing to the growing body of knowledge. This review concentrates on the utilization of natural polymers as drug delivery systems for the treatment of obesity, encompassing recent advancements in both natural and synthetic polymers. The comprehensive exploration includes an analysis of the advantages and disadvantages associated with these polymer carriers. The examination of these characteristics provides valuable insights into potential future developments in the field of drug delivery for obesity treatment.
Collapse
Affiliation(s)
- Miaomiao Xiao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; College of Exercise and Health, Shenyang Sport University, Shenyang 110102, PR China
| | - Zongheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Chang Li
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, PR China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Liaoning Research Institute for Eugenic Birth & Fertility, China Medical University, Shenyang, 110031, P.R.China.
| |
Collapse
|
3
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
4
|
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica BM, Volf I. Cellulose-Based Metallogels-Part 3: Multifunctional Materials. Gels 2023; 9:878. [PMID: 37998968 PMCID: PMC10671087 DOI: 10.3390/gels9110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuxOy, ZnO, Al2O3, TiO2, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO2, Ag, and Fe3O4 nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (Fe2O3 and Fe3O4) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO2, ZnO, and Al2O3 is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- CellON AS, Lakkegata 75C, NO-0562 Oslo, Norway
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| |
Collapse
|
5
|
Mikhailidi A, Volf I, Belosinschi D, Tofanica BM, Ungureanu E. Cellulose-Based Metallogels-Part 1: Raw Materials and Preparation. Gels 2023; 9:gels9050390. [PMID: 37232982 DOI: 10.3390/gels9050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Metallogels are a class of materials produced by the complexation of polymer gels with metal ions that can form coordination bonds with the functional groups of the gel. Hydrogels with metal phases attract special attention due to the numerous possibilities for functionalization. Cellulose is preferable for the production of hydrogels from economic, ecological, physical, chemical, and biological points of view since it is inexpensive, renewable, versatile, non-toxic, reveals high mechanical and thermal stability, has a porous structure, an imposing number of reactive OH groups, and good biocompatibility. Due to the poor solubility of natural cellulose, the hydrogels are commonly produced from cellulose derivatives that require multiple chemical manipulations. However, there is a number of techniques of hydrogel preparation via dissolution and regeneration of non-derivatized cellulose of various origins. Thus, hydrogels can be produced from plant-derived cellulose, lignocellulose and cellulose wastes, including agricultural, food and paper wastes. The advantages and limitations of using solvents are discussed in this review with regard to the possibility of industrial scaling up. Metallogels are often formed on the basis of ready-made hydrogels, which is why the choice of an adequate solvent is important for obtaining desirable results. The methods of the preparation of cellulose metallogels with d-transition metals in the present state of the art are reviewed.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 191186 St. Petersburg, Russia
| | - Irina Volf
- Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Dan Belosinschi
- Département de Chimie-Biologie/Biologie Medicale, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada
| | - Bogdan-Marian Tofanica
- Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Elena Ungureanu
- Department of Exact Sciences, "Ion Ionescu de la Brad" University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
6
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
7
|
Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Zaric BL, Obradovic M, Sudar-Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug Delivery Systems for Diabetes Treatment. Curr Pharm Des 2020; 25:166-173. [PMID: 30848184 DOI: 10.2174/1381612825666190306153838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Insulin is essential for the treatment of Type 1 diabetes mellitus (T1DM) and is necessary in numerous cases of Type 2 diabetes mellitus (T2DM). Prolonged administration of anti-diabetic therapy is necessary for the maintenance of the normal glucose levels and thereby preventing vascular complications. A better understanding of the disease per se and the technological progress contribute to the development of new approaches with the aim to achieve better glycemic control. OBJECTIVE Current therapies for DM are faced with some challenges. The purpose of this review is to analyze in detail the current trends for insulin delivery systems for diabetes treatment. RESULTS Contemporary ways have been proposed for the management of both types of diabetes by adequate application of drug via subcutaneous, buccal, oral, ocular, nasal, rectal and pulmonary ways. Development of improved oral administration of insulin is beneficial regarding mimicking physiological pathway of insulin and minimizing the discomfort of the patient. Various nanoparticle carriers for oral and other ways of insulin delivery are currently being developed. Engineered specific properties of nanoparticles (NP): controlling toxicity of NP, stability and drug release, can allow delivery of higher concentration of the drug to the desired location. CONCLUSIONS The successful development of any drug delivery system relies on solving three important issues: toxicity of nanoparticles, stability of nanoparticles, and desired drug release rate at targeted sites. The main goals of future investigations are to improve the existing therapies by pharmacokinetic modifications, development of a fully automatized system to mimic insulin delivery by the pancreas and reduce invasiveness during admission.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Jovan Nedeljkovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiation Chemistry and Physics, Belgrade, Serbia
| | - Vesna Lazic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiation Chemistry and Physics, Belgrade, Serbia
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
9
|
Huang D, Deng M, Kuang S. Polymeric Carriers for Controlled Drug Delivery in Obesity Treatment. Trends Endocrinol Metab 2019; 30:974-989. [PMID: 31668904 PMCID: PMC6927547 DOI: 10.1016/j.tem.2019.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
The global rise in the prevalence of obesity and affiliated metabolic syndrome poses a significant threat to human health. Various approaches, including bariatric surgery and pharmacotherapy, have been used in the clinical setting for obesity treatment; however, these conventional options remain ineffective and carry risks of adverse effects. Therefore, treatments with higher efficacy and specificity are urgently required. Emerging drug delivery systems use polymeric materials and chemical strategies to improve therapeutic efficacy and specificity through stabilization and spatiotemporally controlled release of antiobesity agents. In this review, we provide insights into current treatments for obesity with a focus on recent developments of polymeric carriers for enhanced antiobesity drug delivery.
Collapse
Affiliation(s)
- Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Liao ZX, Fa YC, Kempson IM, Tseng SJ. Repolarization of M2 to M1 Macrophages Triggered by Lactate Oxidase Released from Methylcellulose Hydrogel. Bioconjug Chem 2019; 30:2697-2702. [DOI: 10.1021/acs.bioconjchem.9b00618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Chen Fa
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Ivan M. Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - S.-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
- National Taiwan University YongLin Scholar, National Taiwan University, Taipei, 10672, Taiwan
| |
Collapse
|
11
|
Li J, Cha R, Luo H, Hao W, Zhang Y, Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019; 223:119474. [PMID: 31536920 DOI: 10.1016/j.biomaterials.2019.119474] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
As a chronic and lifelong disease, obesity not only significant impairs health but also dramatically shortens life span (at least 10 years). Obesity requires a life-long effort for the successful treatment because a number of abnormalities would appear in the development of obesity. Nanomaterials possess large specific surface area, strong absorptivity, and high bioavailability, especially the good targeting properties and adjustable release rate, which would benefit the diagnosis and treatment of obesity and obesity-related metabolic diseases. Herein, we discussed the therapy and diagnosis of obesity and obesity-related metabolic diseases by using nanomaterials. Therapies of obesity with nanomaterials include improving intestinal health and reducing energy intake, targeting and treating functional cell abnormalities, regulating redox homeostasis, and removing free lipoprotein in blood. Diagnosis of obesity-related metabolic diseases would benefit the therapy of these diseases. The development of nanomaterials will promote the diagnosis and therapy of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China.
| | - Huize Luo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Wenshuai Hao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Yan Zhang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100032, PR China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|
12
|
Tan HL, Teow SY, Pushpamalar J. Application of Metal Nanoparticle⁻Hydrogel Composites in Tissue Regeneration. Bioengineering (Basel) 2019; 6:E17. [PMID: 30754677 PMCID: PMC6466392 DOI: 10.3390/bioengineering6010017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Challenges in organ transplantation such as high organ demand and biocompatibility issues have led scientists in the field of tissue engineering and regenerative medicine to work on the use of scaffolds as an alternative to transplantation. Among different types of scaffolds, polymeric hydrogel scaffolds have received considerable attention because of their biocompatibility and structural similarity to native tissues. However, hydrogel scaffolds have several limitations, such as weak mechanical property and a lack of bioactive property. On the other hand, noble metal particles, particularly gold (Au) and silver (Ag) nanoparticles (NPs), can be incorporated into the hydrogel matrix to form NP⁻hydrogel composite scaffolds with enhanced physical and biological properties. This review aims to highlight the potential of these hybrid materials in tissue engineering applications. Additionally, the main approaches that have been used for the synthesis of NP⁻hydrogel composites and the possible limitations and challenges associated with the application of these materials are discussed.
Collapse
Affiliation(s)
- Hui-Li Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor Darul Ehsan, Malaysia.
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Janarthanan Pushpamalar
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor Darul Ehsan, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|