1
|
Luo X, Jia K, Xing J, Yi J. The utilization of nanotechnology in the female reproductive system and related disorders. Heliyon 2024; 10:e25477. [PMID: 38333849 PMCID: PMC10850912 DOI: 10.1016/j.heliyon.2024.e25477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The health of the reproductive system is intricately linked to female fertility and quality of life. There has been a growing prevalence of reproductive system disorders among women, particularly in younger age groups, resulting in significant adverse effects on their reproductive health. Consequently, there is an urgent need for effective treatment modalities. Nanotechnology, as an advanced discipline, provides innovative avenues for managing and treating diseases of the female reproductive system by enabling precise manipulation and regulation of biological molecules and cells. By utilizing nanodelivery systems, drugs can be administered with pinpoint accuracy, leading to reduced side effects and improved therapeutic efficacy. Moreover, nanomaterial imaging techniques enhance diagnostic precision and sensitivity, aiding in the assessment of disease severity and progression. Furthermore, the implementation of nanobiosensors facilitates early detection and prevention of ailments. This comprehensive review aims to summarize recent applications of nanotechnology in the treatment of female reproductive system diseases. The latest advancements in drug delivery, diagnosis, and treatment approaches will be discussed, with an emphasis on the potential of nanotechnology to improve treatment outcomes and overall quality of life.
Collapse
Affiliation(s)
- Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
2
|
Su Z, Yao C, Tipper J, Yang L, Xu X, Chen X, Bao G, He B, Xu X, Zheng Y. Nanostrategy of Targeting at Embryonic Trophoblast Cells Using CuO Nanoparticles for Female Contraception. ACS NANO 2023; 17:25185-25204. [PMID: 38088330 DOI: 10.1021/acsnano.3c08267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Effective contraceptives have been comprehensively adopted by women to prevent the negative consequences of unintended pregnancy for women, families, and societies. With great contributions of traditional hormonal drugs and intrauterine devices (IUDs) to effective female contraception by inhibiting ovulation and deactivating sperm, their long-standing side effects on hormonal homeostasis and reproductive organs for females remain concerns. Herein, we proposed a nanostrategy for female contraceptives, inducing embryonic trophoblast cell death using nanoparticles to prevent embryo implantation. Cupric oxide nanoparticles (CuO NPs) were adopted in this work to verify the feasibility of the nanostrategy and its contraceptive efficacy. We carried out the in vitro assessment on the interaction of CuO NPs with trophoblast cells using the HTR8/SVneo cell line. The results showed that the CuO NPs were able to be preferably uptaken into cells and induced cell damage via a variety of pathways including oxidative stress, mitochondrial damage, DNA damage, and cell cycle arrest to induce cell death of apoptosis, ferroptosis, and cuproptosis. Moreover, the key regulatory processes and the key genes for cell damage and cell death caused by CuO NPs were revealed by RNA-Seq. We also conducted in vivo experiments using a rat model to examine the contraceptive efficacy of both the bare CuO NPs and the CuO/thermosensitive hydrogel nanocomposite. The results demonstrated that the CuO NPs were highly effective for contraception. There was no sign of disrupting the homeostasis of copper and hormone, or causing inflammation and organ damage in vivo. In all, this nanostrategy exhibited huge potential for contraceptive development with high biosafety, efficacy, clinical translation, nonhormonal style, and on-demand for women.
Collapse
Affiliation(s)
- Zhenning Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Cancan Yao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Joanne Tipper
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lijun Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Xiangbo Xu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xihua Chen
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Guo Bao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Science, Western Sydney University, Sydney, New South Wales 2751, Australia
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
3
|
Su Z, Diao T, McGuire H, Yao C, Yang L, Bao G, Xu X, He B, Zheng Y. Nanomaterials Solutions for Contraception: Concerns, Advances, and Prospects. ACS NANO 2023; 17:20753-20775. [PMID: 37856253 DOI: 10.1021/acsnano.3c04366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Preventing unintentional pregnancy is one of the goals of a global public health policy to minimize effects on individuals, families, and society. Various contraceptive formulations with high effectiveness and acceptance, including intrauterine devices, hormonal patches for females, and condoms and vasectomy for males, have been developed and adopted over the last decades. However, distinct breakthroughs of contraceptive techniques have not yet been achieved, while the associated long-term adverse effects are insurmountable, such as endocrine system disorder along with hormone administration, invasive ligation, and slowly restored fertility after removal of intrauterine devices. Spurred by developments of nanomaterials and bionanotechnologies, advanced contraceptives could be fulfilled via nanomaterial solutions with much safer and more controllable and effective approaches to meet various and specific needs for women and men at different reproductive stages. Nanomedicine techniques have been extended to develop contraceptive methods, such as the targeted drug delivery and controlled release of hormone using nanocarriers for females and physical stimulation assisted vasectomy using functional nanomaterials via photothermal treatment or magnetic hyperthermia for males. Nanomaterial solutions for advanced contraceptives offer significantly improved biosafety, noninvasive administration, and controllable reversibility. This review summarizes the nanomaterial solutions to female and male contraceptives including the working mechanisms, clinical concerns, and their merits and demerits. This work also reviewed the nanomaterials that have been adopted in contraceptive applications. In addition, we further discuss safety considerations and future perspectives of nanomaterials in nanostrategy development for next-generation contraceptives. We expect that nanomaterials would potentially replace conventional materials for contraception in the near future.
Collapse
Affiliation(s)
- Zhenning Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tian Diao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Helen McGuire
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cancan Yao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Lijun Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guo Bao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Science, Western Sydney University, Kumamoto NSW 2751, Australia
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
4
|
Unnikrishnan V, Venugopal A, Sivadasan SB, Boniface Fernandez F, Arumugam S, P R HV, Parayanthala Valappil M. Cellular and sub-chronic toxicity of hydroxyapatite porous beads loaded with antibiotic in rabbits, indented for chronic osteomyelitis. Int J Pharm 2022; 616:121535. [PMID: 35124118 DOI: 10.1016/j.ijpharm.2022.121535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
Bioceramics have emerged as a hopeful remedy for site-specific drug delivery in orthopaedic complications, especially in chronic osteomyelitis. The bioresorbable nature of bioceramic materials shaped them into a versatile class of local antibiotic delivery systems in the treatment of chronic osteomyelitis. Hydroxyapatite (HA) based bioceramics with natural bone mimicking chemical composition are of particular interest due to their excellent biocompatibility, better osteoconductive and osteointegrative properties. Although HA has been widely recognized as an efficient tool for local delivery of antibiotics, information regarding its subchronic systemic toxicity have not been explored yet. Moreover, a detailed investigation of in vivo subchronic systemic toxicity of HA is critical for understanding its biocompatibility and futuristic clinical applications of these materials as novel therapeutic system in its long haul. Evaluation of biocompatibility and sub-chronic systemic toxicity are significant determinants in ensuring biomedical device's long-term functionality and success. Sub-chronic systemic toxicity allows assessing the potential adverse effects caused by leachable and nanosized wear particles from the device materials under permissible human exposure to the distant organs that are not in direct contact with the devices. In this context, the present study evaluates the sub-chronic systemic toxicity of in-house developed Hydroxyapatite porous beads (HAPB), gentamicin-loaded HAPB (HAPB + G) and vancomycin- loaded HAPB (HAPB + V) through 4 and 26-week muscle implantation in New Zealand white rabbits, as per ISO 10993-6 and ISO 10993-11. Analysis of cellular responses of HAPB towards Human Osteosarcoma (HOS) cell line through MTT assay, direct contact cytotoxicity, live/dead assay based on Imaging Flow Cytometry (IFC) showed its non-cytotoxic behaviour. Histopathological analysis of muscle tissue, organs like heart, lungs, liver, kidney, spleen, adrenals, intestine, testes, ovaries, and uterus did not reveal any abnormal biological responses. Our study concludes that the HAPB, gentamicin-loaded HAPB (HAPB + G) and vancomycin-loaded HAPB (HAPB + V) are biocompatible and did not induce sub-chronic systemic toxicity and hence satisfies the criteria for regulatory approval of HAs as a plausible candidate for clinical applications.
Collapse
Affiliation(s)
- Vandana Unnikrishnan
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Akhil Venugopal
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Suresh Babu Sivadasan
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Francis Boniface Fernandez
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Sabareeswaran Arumugam
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Harikrishna Varma P R
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
5
|
Recent progress in advanced biomaterials for long-acting reversible contraception. J Nanobiotechnology 2022; 20:138. [PMID: 35300702 PMCID: PMC8932341 DOI: 10.1186/s12951-022-01329-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Unintended pregnancy is a global issue with serious ramifications for women, their families, and society, including abortion, infertility, and maternal death. Although existing contraceptive strategies have been widely used in people's lives, there have not been satisfactory feedbacks due to low contraceptive efficacy and related side effects (e.g., decreased sexuality, menstrual cycle disorder, and even lifelong infertility). In recent years, biomaterials-based long-acting reversible contraception has received increasing attention from the viewpoint of fundamental research and practical applications mainly owing to improved delivery routes and controlled drug delivery. This review summarizes recent progress in advanced biomaterials for long-acting reversible contraception via various delivery routes, including subcutaneous implant, transdermal patch, oral administration, vaginal ring, intrauterine device, fallopian tube occlusion, vas deferens contraception, and Intravenous administration. In addition, biomaterials, especially nanomaterials, still need to be improved and prospects for the future in contraception are mentioned.
Collapse
|
6
|
Sitruk-Ware R. [New frontiers in contraception research]. Med Sci (Paris) 2021; 37:1014-1020. [PMID: 34851278 DOI: 10.1051/medsci/2021163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Improving current contraceptives and discover novel methods easy to use with added health benefits would meet the needs of couples who seek alternatives to current methods. New delivery systems target user-controlled, longer-acting options to provide choice, user's autonomy and improve compliance. Self-injections, microarray patches, pod rings able to deliver several molecules aim to prevent both pregnancies and sexually transmitted infections. Improved intrauterine systems and non-surgical permanent methods are also on the research agenda. The search for novel methods must continue, to curb maternal mortality led by multiple pregnancies and unsafe abortion, still a burden in many countries.
Collapse
Affiliation(s)
- Régine Sitruk-Ware
- The Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, États-Unis
| |
Collapse
|
7
|
Haddad LB, Townsend JW, Sitruk-Ware R. Contraceptive Technologies: Looking Ahead to New Approaches to Increase Options for Family Planning. Clin Obstet Gynecol 2021; 64:435-448. [PMID: 34323226 PMCID: PMC8328155 DOI: 10.1097/grf.0000000000000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With persistently high global rates of unintended pregnancy and contraceptive nonuse, nonadherence and discontinuation, new contraceptive methods must address the needs of women and men who seek alternatives to their current options. Methods under development aim to reduce potential side effects, improve access and ease of use, ensure safety, increase secondary benefits associated with method use and expand options for both women and men. Developmental approaches employed to enhance current methods utilize new delivery systems and novel active pharmaceutical ingredients. This will improve overall user satisfaction with the methods used while expanding the number of options available to provide choice and value user autonomy in the highly diverse contraceptive markets around the world.
Collapse
|
8
|
Liu X, Chen L, Zhang Y, Xin X, Qi L, Jin M, Guan Y, Gao Z, Huang W. Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA. Eur J Pharm Sci 2021; 158:105641. [DOI: 10.1016/j.ejps.2020.105641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/17/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
|
9
|
Wang S, Gu M, Luan CC, Wang Y, Gu X, He JH. Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts. Neural Regen Res 2021; 16:1606-1612. [PMID: 33433491 PMCID: PMC8323676 DOI: 10.4103/1673-5374.303041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a previous study, we used natural butterfly wings as a cell growth matrix for tissue engineering materials and found that the surface of different butterfly wings had different ultramicrostructures, which can affect the qualitative growth of cells and regulate cell growth, metabolism, and gene expression. However, the biocompatibility and biosafety of butterfly wings must be studied. In this study, we found that Sprague-Dawley rat dorsal root ganglion neurons could grow along the structural stripes of butterfly wings, and Schwann cells could normally attach to and proliferate on different species of butterfly wings. The biocompatibility and biosafety of butterfly wings were further examined through subcutaneous implantation in Sprague-Dawley rats, intraperitoneal injection in Institute of Cancer Research mice, intradermal injection in rabbits, and external application to guinea pigs. Our results showed that butterfly wings did not induce toxicity, and all examined animals exhibited normal behaviors and no symptoms, such as erythema or edema. These findings suggested that butterfly wings possess excellent biocompatibility and biosafety and can be used as a type of tissue engineering material. This study was approved by the Experimental Animal Ethics Committee of Jiangsu Province of China (approval No. 20190303-18) on March 3, 2019.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei Province, China
| | - Cheng-Cheng Luan
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiang-Hong He
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
10
|
Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin Exp Reprod Med 2020; 47:245-262. [PMID: 33227186 PMCID: PMC7711096 DOI: 10.5653/cerm.2020.03650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an in-depth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neelam Pathak
- School of Life Sciences, University of Rajasthan, Jaipur, India
| | | | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
11
|
Wekwejt M, Michno A, Truchan K, Pałubicka A, Świeczko-Żurek B, Osyczka AM, Zieliński A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1114. [PMID: 31382557 PMCID: PMC6722923 DOI: 10.3390/nano9081114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Anna Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Truchan
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland
- Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Beata Świeczko-Żurek
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|