1
|
Santos MS, dos Santos AB, Carvalho MS. New Insights in Hydrogels for Periodontal Regeneration. J Funct Biomater 2023; 14:545. [PMID: 37998114 PMCID: PMC10672517 DOI: 10.3390/jfb14110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Alexandra B. dos Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Zheng H, Zhou Y, Zheng Y, Liu G. Advances in hydrogels for the treatment of periodontitis. J Mater Chem B 2023; 11:7321-7333. [PMID: 37431231 DOI: 10.1039/d3tb00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Periodontitis is the second most prevalent oral disease and can cause serious harm to human health. Hydrogels are excellent biomaterials that can be used for periodontitis as drug delivery platforms to achieve inflammation control through high drug delivery efficiency and sustained drug release and as tissue scaffolds to achieve tissue remodelling through encapsulated cell wrapping and effective mass transfer. In this review, we summarize the latest advances in the treatment of periodontitis with hydrogels. The pathogenic mechanisms of periodontitis are introduced first, followed by the recent progress of hydrogels in controlling inflammation and tissue reconstruction, in which the specific performance of hydrogels is discussed in detail. Finally, the challenges and limitations of hydrogels for clinical applications in periodontitis are discussed and possible directions for development are proposed. This review aims to provide a reference for the design and fabrication of hydrogels for the treatment of periodontitis.
Collapse
Affiliation(s)
- Huiyu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yuan Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Bommer C, Waller T, Hilbe M, Wiedemeier D, Meyer N, Mathes S, Jung R. Efficacy and safety of P 11-4 for the treatment of periodontal defects in dogs. Clin Oral Investig 2022; 26:3151-3166. [PMID: 35006293 PMCID: PMC8898238 DOI: 10.1007/s00784-021-04297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Objectives This study’s aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. Materials and methods Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. Results Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. Conclusion A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. Clinical relevance The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04297-6.
Collapse
Affiliation(s)
| | - Tobias Waller
- Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Monika Hilbe
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Daniel Wiedemeier
- Center of Dental Medicine, Statistical Services, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Nina Meyer
- Department for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Stephanie Mathes
- Department for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Ronald Jung
- Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
5
|
Modak P, Hammond W, Jaffe M, Nadig M, Russo R. Dynamic, 3DSchiff base networks for medical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Gruening M, Neuber S, Nestler P, Lehnfeld J, Dubs M, Fricke K, Schnabelrauch M, Helm CA, Müller R, Staehlke S, Nebe JB. Enhancement of Intracellular Calcium Ion Mobilization by Moderately but Not Highly Positive Material Surface Charges. Front Bioeng Biotechnol 2020; 8:1016. [PMID: 33015006 PMCID: PMC7505933 DOI: 10.3389/fbioe.2020.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials’ zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.
Collapse
Affiliation(s)
- Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Sven Neuber
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Peter Nestler
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Jutta Lehnfeld
- Colloid and Interface Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Manuela Dubs
- Department of Biomaterials, INNOVENT e.V., Jena, Germany
| | - Katja Fricke
- Leibniz Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
| | | | - Christiane A Helm
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Rainer Müller
- Colloid and Interface Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Susanne Staehlke
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - J Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany.,Department Science and Technology of Life, Light and Matter, Faculty of Interdisciplinary, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health 2020; 20:148. [PMID: 32429904 PMCID: PMC7238548 DOI: 10.1186/s12903-020-01124-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Periodontitis is a chronic inflammation of the tooth supporting structures that finally can lead to tooth loss. As chronic periodontitis is associated with systemic diseases multiple approaches have been followed to support regeneration of the destructed tissue. But very few materials are actually used in the clinic. A new and promising group of biomaterials with advantageous biomechanical properties that have the ability to support periodontal regeneration are self-assembling peptides (SAP). However, there is still a lack of 3D periodontal models that can evaluate the migration potential of such novel materials. Methods All experiments were performed with primary human periodontal ligament fibroblasts (HPLF). Migration capacity was assessed in a three-dimensional model of the human periodontal ligament by measuring the migration distance of viable cells on coated (Enamel Matrix Protein (EMP), P11–4, collagen I) or uncoated human dentin. Cellular metabolic activity on P11–4 hydrogels was assessed by a metabolic activity assay. Deposition of ECM molecules in a P11–4 hydrogel was visualized by immunostaining of collagen I and III and fibrillin I. Results The 3D periodontal model was feasible to show the positive effect of EMP for periodontal regeneration. Subsequently, self-assembling peptide P11–4 was used to evaluate its capacity to support regenerative processes in the 3D periodontal model. HPLF coverage of the dentin surface coated with P11–4 increased significantly over time, even though delayed compared to EMP. Cell viability increased and inclusion of ECM proteins into the biomaterial was shown. Conclusion The presented results indicate that the 3D periodontal model is feasible to assess periodontal defect coverage and that P11–4 serves as an efficient supporter of regenerative processes in the periodontal ligament. Clinical relevance The establishment of building-block synthetic polymers offers new opportunities for clinical application in dentistry. Self-assembling peptides represent a new generation of biomaterials as they are able to respond dynamically to the changing environment of the biological surrounding. Especially in the context of peri-implant disease prevention and treatment they enable the implementation of new concepts.
Collapse
|
8
|
Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109883. [DOI: 10.1016/j.msec.2019.109883] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
9
|
Bairagi D, Biswas P, Basu K, Hazra S, Hermida-Merino D, Sinha DK, Hamley IW, Banerjee A. Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS APPLIED BIO MATERIALS 2019; 2:5235-5244. [DOI: 10.1021/acsabm.9b00424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6, 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Kawasaki T, Tsukiyama K, Irizawa A. Dissolution of a fibrous peptide by terahertz free electron laser. Sci Rep 2019; 9:10636. [PMID: 31337794 PMCID: PMC6650392 DOI: 10.1038/s41598-019-47011-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Fibrous peptides such as amyloid fibrils have various roles in biological system, e.g., as causal factor of serious amyloidosis in human and as functional regulator of cell formation in bacteria and eukaryotes. In addition, the fiber-type format is promising as biocompatible scaffold. Therefore, the dissolution method of peptide fibril is potentially useful at many scenes in medical and material fields: as reductive way of pathogenic amyloid, as modification technique of cell structure, and as fabrication tool of biomaterials. However, the fibril structure is generally difficult to be dissociated due to its rigid stacked conformation. Here, we propose a physical engineering technology using terahertz free electron laser (FEL) at far-infrared wavelengths from 70 to 80 μm. Infrared microscopy analysis of the irradiated fibril of calcitonin peptide as a model showed that β-sheet was decreased, and α-helix, turn, and others were increased, compared to those of the fibril before the FEL irradiation. Interestingly, the dissociative effect by the far-infrared laser was remarkable than that by the mid-infrared laser tuned to 6.1 μm that corresponds to amide I. In addition, simple heating at 363 K deformed the fibril state but increased the amount of β-sheet, which was contrast with the action by the FEL, and scanning-electron microscopy and Congo-red staining revealed that the fibril was collapsed power-dependently within a range from 25 to 900 mJ energies supplied with the FEL at 74 μm. It can be considered that irradiation of intense terahertz wave can dissociate fibrous conformation of peptide with little influence of thermal effect.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- IR Free Electron Laser Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Koichi Tsukiyama
- IR Free Electron Laser Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akinori Irizawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
11
|
Koch F, Ekat K, Kilian D, Hettich T, Germershaus O, Lang H, Peters K, Kreikemeyer B. A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential. Adv Healthc Mater 2019; 8:e1900167. [PMID: 30985084 DOI: 10.1002/adhm.201900167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Periodontitis is a chronic inflammatory and tissue-destructive disease. Since the polymicrobiome in the oral cavity makes it difficult to treat, novel therapeutic strategies are required. Hydrogels based on self-assembling peptides (SAP) can be suitable candidates for periodontal therapy due to their injectability, biocompatibility, cargo-loading capacity, and tunable physicochemical and mechanical properties. In this study, two SAP hydrogels (P11-4 and P11-28/29) are examined for their intrinsic antimicrobial activity, regenerative potential, and antibiotic delivery capacity. A significant antibacterial effect of P11-28/29 hydrogels on the periodontal pathogen Porphyromonas gingivalis and a less pronounced effect for P11-4 hydrogels is demonstrated. The metabolic activity rates of human dental follicle stem cells (DFSCs), which reflect cell viability and may thus indicate the regenerative capacity, are similar on tissue culture polystyrene (TCPS) and on P11-4 hydrogels after 14 days of culture. Noticeably, both SAP hydrogels strengthen the osteogenic differentiation of DFSCs compared with TCPS. The incorporation of tetracycline, ciprofloxacin, and doxycycline does not affect fibril formation of either SAP hydrogel and results in favorable release kinetics up to 120 h. In summary, this study reveals that P11-SAP hydrogels combine many favorable properties required to make them applicable as prospective novel treatment strategy for periodontal therapy.
Collapse
Affiliation(s)
- Franziska Koch
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Katharina Ekat
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
- Clinic for Restorative Dentistry and PeriodontologyUniversity Medicine Rostock 18057 Rostock Germany
| | - David Kilian
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Timm Hettich
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Oliver Germershaus
- School of Life SciencesInstitute of Pharma TechnologyUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Herrmann Lang
- Clinic for Restorative Dentistry and PeriodontologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Kirsten Peters
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Bernd Kreikemeyer
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
| |
Collapse
|