1
|
Liu Y, Kong L, Yu Y, Zang J, Zhang L, Guo RB, Li ST, Cheng L, Li XT, Chen YQ. Tumor Microenvironment Responsive Key Nanomicelles for Effective Against Invasion and Metastasis in Ovarian Cancer Using Mice Model. Int J Nanomedicine 2025; 20:215-238. [PMID: 39802386 PMCID: PMC11724672 DOI: 10.2147/ijn.s470219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited. Nano-particles, as a novel drug delivery system, have significant potential for improving therapeutic efficacy and overcoming these challenges. Methods According to the high expression level of matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, MMP-2 responsive nano-particles (PVGLIG-MTX-D/T-NMs) containing docetaxel and triptolide were prepared by the thin-film dispersion method. The synergistic effect between docetaxel and triptolide was systematically investigated, the ratio of the two drugs was optimized, and the physicochemical properties of the nano-particles and their ability to inhibit ovarian cancer cell growth and metastasis were evaluated in vitro and in vivo. Results PVGLIG-MTX-D/T-NMs enhanced the targeting, stability, and bioavailability of the drug, while reducing the dose and toxicity. In addition, by regulating the expression levels of E-Cadherin, N-Cadherin, matrix metalloproteinases (MMPs), hypoxia-inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF), it exhibited an inhibitory effect on epithelial-mesenchymal transformation (EMT) and tumor cell angiogenesis, and effectively inhibited the invasion and metastasis of ovarian cancer cells. Conclusion PVGLIG-MTX-D/T-NMs achieved passive targeting of tumor sites by enhancing permeability and retention (EPR) effects. Subsequently, the uptake of the drug by tumor cells was enhanced by MMP-2 responsiveness and the modification of methotrexate targeting ligands. By regulating the expression levels of invasion- and metastasis-related proteins in tumor tissues, the nano-particles affected the EMT process, inhibited tumor angiogenesis, and suppressed the malignant potential of invasion and metastasis in ovarian cancer. These findings provided a new direction for further exploration of tumor-targeted therapy.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Shu-Tong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| | - You-Qiang Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People’s Republic of China
- Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key Laboratory, Shenyang, 110847, People’s Republic of China
| |
Collapse
|
2
|
Huang K, Yi X, Xie H, Luo J, Zeng Q, He F, Wang L. Iron-Based Nanoplatforms Achieve Hepatocellular Carcinoma Regression Through a Cascade of Effects. Int J Nanomedicine 2024; 19:11105-11128. [PMID: 39502633 PMCID: PMC11537158 DOI: 10.2147/ijn.s479425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Ferroptosis is a regulated form of cell death characterized by iron-dependent accumulation of associated lipid peroxides (LPO), which can induce cell death when a certain level is reached. However, the extremely complex tumor microenvironment (TME) has the characteristics of antioxidant, even if it induces ferroptosis of tumor cells, its killing effect on tumor cells is still very limited. To solve this problem, we constructed a novel nanomaterials (GOx/EC@Fe3O4@CCM). We evaluated the anticancer effect of this nanomaterial in inhibiting tumor growth through comprehensive in vitro and in vivo experiments. Methods We successfully synthesized GOx/EC@Fe3O4 by one-pan synthesis method, then coated the Hepatocellular carcinoma cell membrane on its surface by co-extrusion technology, and finally synthesized the GOx/EC@Fe3O4@CCM nanoplatforms. We characterized the compounds in terms of morphology, particle size, and Zeta potential. In addition, we also studied the anti-tumor effect of GOx/EC@Fe3O4@CCM nanoplatforms from the following aspects, including the performance test of the nanoplatform, the intracellular effect of the nanoplatform, the anti-tumor effect in vitro, the intracellular ROS analysis, the intracellular effect of EC, and the anti-tumor effect in vivo. Results The iron-based carriers in GOx/EC@Fe3O4@CCM nanoplatforms are released and produce ferrous ions (Fe2+) in an acidic environment. Due to the limitation of the endogenous level of hydrogen peroxide (H2O2), we introduced GOx into the TME or tumor cells. Under the catalysis of GOx, glucose reacted rapidly to produce a large amount of H2O2, which then combined with Fe2+ to produce a large number of Hydroxyl radical (·OH). Its toxicity leads to dysfunction of cell membrane and organelles, and then causes cell damage. EC inhibits Nuclear factor erythroid 2-related factor 2 (Nrf2) in cancer cells, which effectively down-regulates downstream gene products, including NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HMOX1). A series of chain reactions reduce the escape effect of oxidative stress (OS) and effectively maintain a high level of intracellular oxidation. Furthermore, it induces sustained and intense ferroptosis in tumor cells. Finally, the use of cancer cell membrane modified nanoplatforms due to the homology of membrane protein components improves the tumor cell targeting of the nanoplatforms, showing significant tumor cell inhibition and killing effect in vivo. Conclusion The results showed that the GOx/EC@Fe3O4@CCM nanoplatforms successfully induced significant ferroptosis of Hepatocellular carcinoma cells through a cascade effect, and finally effectively promoted cancer cell regression.
Collapse
Affiliation(s)
- Kunzhao Huang
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Xiaoyuan Yi
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Huaying Xie
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Jianzhang Luo
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Qingyu Zeng
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Feifei He
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Liyan Wang
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| |
Collapse
|
3
|
Hu Y, Zou J, Wang Q, Chen Y, Wang H, Li J. Lipoprotein-mimicking nanotherapeutics reconstituted with chenodeoxycholic acid modified protein for efficient tumor targeting. Eur J Pharm Biopharm 2024; 196:114184. [PMID: 38244896 DOI: 10.1016/j.ejpb.2024.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Lipoprotein-derived nanotherapeutics based on endogenous lipid supramolecules have been regarded as an exceptional and promising approach for anti-tumor drug delivery. However, certain challenges associated with the main component apolipoprotein, such as limited availability, high cost, and insufficient specificity of relevant receptor expression, pose significant barriers to its widespread development and application. The objective of this study is to fabricate lipoprotein-mimicking nanocomposites, denoted as CA-P-rHDL by substituting apolipoprotein with chenodeoxycholic acid (CA) modified bovine serum albumin (BSA), and subsequently assess their tumor-targeting capability and anti-tumor efficacy. CA modified BSA (CA-BSA) was successfully synthesized and characterized by quantifying the degree of protein substitution. Subsequently, a nanostructured lipid carrier (NLC) mimicking the hydrophobic core of natural lipoproteins was attached with CA-BSA to form a lipoprotein-mimic nanocomplex termed as CA-rHDL. CA-rHDL was endowed with lipoprotein-like structures, favorable particle size, zeta potential and excellent paclitaxel encapsulation (termed as CA-P-rHDL). The internalization of CA-rHDL by HepG2 cells exhibited significantly superior efficiency, with a notably higher in HepG2 cells compared to LO2 cells. Confocal laser scanning microscopy revealed that CA-rHDL evaded lysosomal degradation and was evenly distributed throughout the cells. CCK-8 studies demonstrated that CA-P-rHDL exhibited significantly superior inhibition of tumor cells growth compared to other paclitaxel formulations in vitro. Moreover, in vivo imaging observation in H22 tumor-bearing mouse models exhibited a rapid and consistent accumulation of CA-rHDL within tumors, while CA-P-rHDL demonstrated remarkable efficacy against cancer in these mice. These exceptional capabilities of CA-P-rHDL can be attributed to the synergistic targeting effect facilitated by the combination of CA and BSA, rendering it a promising and versatile drug delivery system for targeted anticancer therapy. Consequently, CA-P-rHDL established a highly potential platform for simulating the reconstitution of supramolecular nanovehicles.
Collapse
Affiliation(s)
- Yunfeng Hu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jiahui Zou
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Qianqian Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yang Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Hui Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jin Li
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
4
|
Wang H, Wu D, Wang P, Gao C, Teng H, Liu D, Zhao Y, Du R. Albumin nanoparticles and their folate modified counterparts for delivery of a lupine derivative to hepatocellular carcinoma. Biomed Pharmacother 2023; 167:115485. [PMID: 37713994 DOI: 10.1016/j.biopha.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
In this study, folate polyethylene glycol CTr albumin nanoparticles (FA-PEG-CTr-NPs) targeting hepatocellular carcinoma (HCC) were prepared. The nanoparticle preparation method was optimized using single-factor and response surface analysis. The prepared nanoparticles were characterized for their particle size, zeta potential, and morphology. The particle size and zeta potential were also determined. Additionally, drug loading, encapsulation efficiency, and in vitro drug release of the nanoparticles were determined. Using the Cell Counting Kit-8 method, their cytotoxicity and their cell-targeted uptake were determined using confocal microscopy and flow cytometry. Finally, the in vivo antitumor impact and tumor-targeting ability of the nanoparticles were evaluated by determining tumor volume inhibition and drug biodistribution and performing hematoxylin-eosin (H&E) staining. It was found that CTr could be effectively encapsulated into albumin nanoparticles and functionalized. The drug loading of the two nanoparticles was 67.12 ± 2.4% and 69.33 ± 2.8%, respectively. Regarding drug release, FA-PEG-CTr-NPs (89.0%) exhibited a superior release rate to CTr-NPs (70.5%) in an acidic environment. The in vitro experiments confirmed that FA-PEG-CTr-NPs yielded better cytotoxicity and faster drug uptake results than CTr and CTr-NPs. In vivo experiments confirmed that FA-PEG-CTr-NPs exhibited markedly better tumor inhibitory activity (inhibition rate was 80.21%), drug safety, and targeting than CTr and CTr-NPs. In conclusion, functionalized nanoparticles (FA-PEG-CTr-NPs) can specifically inhibit the malignant proliferation of HCC cells and are thus a promising nanoagent for the treatment of HCC.
Collapse
Affiliation(s)
- Haohao Wang
- School of biological and pharmaceutical engineering, West Anhui University, Lu'an 237012, China
| | - Di Wu
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130118, China
| | - Pan Wang
- School of biological and pharmaceutical engineering, West Anhui University, Lu'an 237012, China
| | - Chunyu Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Dong Liu
- School of biological and pharmaceutical engineering, West Anhui University, Lu'an 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural engineering Research Center, Lu'an 237012, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Zhang M, Li R, Fan X, Zhang S, Liao L, Xu X, Guo Y. Correlation of several forms of folic acid with endometrial cancer: cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) 2011-2018. J Cancer Res Clin Oncol 2023; 149:13619-13629. [PMID: 37515615 DOI: 10.1007/s00432-023-05177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE Endometrial cancer (EC) is a common malignancy of the female reproductive system and although most patients have a good prognosis, 20-30% of patients with advanced disease have a poor prognosis. There are currently no reliable biomarkers for early diagnosis and effective prognostic improvement of the disease. The purpose of this study was to explore the correlation between different forms of folic acid and endometrial cancer. METHODS This study included 8809 female subjects aged ≥ 20 years in the NHANES database from 2011 to 2018, including 8738 non-oncology patients and 71 EC patients. Selection bias was reduced using 1:1 propensity score matching (PSM) method. Restricted cubic spline (RCS) was plotted to explore the non-linear relationship between different forms of folic acid and EC. RESULT Using data from the NHANES database from 2011 to 2018, the association between folic acid and the risk of developing EC was assessed. The results of the 1:1 ratio propensity score matching (PSM) showed 68 each for EC patients and non-oncology participants. Total serum folate, 5-methyltetrahydrofolate (5-methylTHF), 5-formyltetrahydrofolate (5-formylTHF), tetrahydrofolate (THF) and 5,10-methylenetetrahydrofolate (5,10-methenylTHF) were significantly correlated with EC (p < 0.05). In addition, the RCS showed a significant non-linear correlation between THF and 5,10-formyl THF and the risk of developing EC. CONCLUSION The results of this study showed that changes in serum total folate, 5-methylTHF, 5-formylTHF, THF and 5,10-methenylTHF were related to EC.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Ruiping Li
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Xuefen Fan
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Shan Zhang
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Lixin Liao
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Xin Xu
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Yuzhen Guo
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
6
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
7
|
Sahib AS, Wennas ON, Mahdi BW, Al abood RM. In vivo antitumor activity study of targeted chlorambucil-loaded nanolipid carrier for breast cancer. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chlorambucil (CBL) is an efficient anticancer drug. It is a lipophilic agent with serious adverse effects. The objective of this study was to formulate a CBL-loaded nanolipid carrier and target breast cancer using folic acid as a targeting probe. Characterizations of the optimum formulation were 79.9±3% EE after the addition of 4mg CBL, 119±6nm particle size which is considered appropriate for parenteral use, 0.3±0.02 PDI, -42±1mV ZP that stabilized the formulation. Tumor volume, body weight, and tumor mass weight were recorded to evaluate tumor volume doubling time, tumor growth inhibition rate, and systemic toxicity. It appeared there was a significant antitumor activity of targeted formulation compared with non-targeted one and free CBL. Moreover, the systemic toxicity was less after body weight evaluation concerning the targeted formulation when compared with other formulations.
Collapse
|
8
|
Le TMD, Yoon AR, Thambi T, Yun CO. Polymeric Systems for Cancer Immunotherapy: A Review. Front Immunol 2022; 13:826876. [PMID: 35273607 PMCID: PMC8902250 DOI: 10.3389/fimmu.2022.826876] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy holds enormous promise to create a new outlook of cancer therapy by eliminating tumors via activation of the immune system. In immunotherapy, polymeric systems play a significant role in improving antitumor efficacy and safety profile. Polymeric systems possess many favorable properties, including magnificent biocompatibility and biodegradability, structural and component diversity, easy and controllable fabrication, and high loading capacity for immune-related substances. These properties allow polymeric systems to perform multiple functions in immunotherapy, such as immune stimulants, modifying and activating T cells, delivery system for immune cargos, or as an artificial antigen-presenting cell. Among diverse immunotherapies, immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell, and oncolytic virus recently have been dramatically investigated for their remarkable success in clinical trials. In this report, we review the monotherapy status of immune checkpoint inhibitors, CAR-T cell, and oncolytic virus, and their current combination strategies with diverse polymeric systems.
Collapse
Affiliation(s)
- Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea.,Institute of Nano Science and Technology (INST), Hanayang University, Seoul, South Korea.,Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| | - Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea.,Institute of Nano Science and Technology (INST), Hanayang University, Seoul, South Korea.,Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea.,GeneMedicine CO., Ltd., Seoul, South Korea
| |
Collapse
|
9
|
Hu H, Liu X, Hong J, Ye N, Xiao C, Wang J, Li Z, Xu D. Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. J Colloid Interface Sci 2022; 612:246-260. [PMID: 34995863 DOI: 10.1016/j.jcis.2021.12.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/10/2023]
Abstract
Cancer phototherapy has attracted increasing attention for its effectiveness, relatively low side effect, and noninvasiveness. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has been shown to exhibit promising prospects in cancer treatment. However, the tumor hypoxia, high level of intracellular glutathione (GSH), and insufficient photosensitizer uptake significantly limit the PDT efficacy. In this work, we combine oxygen supply, GSH depletion, and tumor targeting in one nanoplatform, folate-decorated mesoporous polydopamine nanoparticles (FA-MPPD) co-loaded with new indocyanine green (IR-820) and perfluorooctane (PFO) (IR-820/PFO@FA-MPPD), to overcome the PDT resistance for enhanced cancer PDT/PTT. IR-820/PFO@FA-MPPD exhibit efficient singlet oxygen generation and photothermal effect under 808 nm laser irradiation, GSH-promoted IR-820 release, and efficient cellular uptake, resulting in high intracellular reactive oxygen species (ROS) level under 808 nm laser irradiation and strong photocytotoxicity in vitro. Following intratumoral injection, IR-820/PFO@FA-MPPD can relieve tumor hypoxia sustainably by PFO-mediated oxygen transport and deplete intracellular GSH by the Michael addition reaction, which boost the PDT effect and lead to the most potent antitumor effect upon 808 nm laser irradiation. The multifunctional IR-820/PFO@FA-MPPD developed in this work offer a relatively simple and effective strategy to potentiate PDT for efficient cancer phototherapy.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, China.
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
10
|
Li J, Wang H, Xu J, Wu S, Han M, Li J, Wang Q, Ge Z. Mimic Lipoproteins Responsive to Intratumoral pH and Allosteric Enzyme for Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:404-416. [PMID: 34962752 DOI: 10.1021/acsami.1c21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jingbo Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Coppens E, Desmaële D, Naret T, Garcia-Argote S, Feuillastre S, Pieters G, Cailleau C, Paul JL, Prost B, Solgadi A, Michel JP, Noiray M, Couvreur P, Mura S. Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream. Int J Pharm 2021; 609:121076. [PMID: 34481886 DOI: 10.1016/j.ijpharm.2021.121076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
A simple approach to achieve a lipoprotein (LP)-mediated drug delivery is to trigger the spontaneous drug insertion into endogenous lipoproteins in the bloodstream, by means of its chemical modification. Nanoparticles (NPs) made of the squalene-gemcitabine (SQGem) conjugate were found to have a high affinity for plasma lipoproteins while free gemcitabine did not, suggesting a key role of the lipid moiety in this event. Whether the drug conjugation to cholesterol, one of the major lipoprotein-transported lipids, could also promote an analogous interaction was a matter of question. NPs made of the cholesterol-gemcitabine conjugate (CholGem) have been herein thoroughly investigated for their blood distribution profile both in vitro and in vivo. Unexpectedly, contrarily to SQGem, no trace of the CholGem prodrug could be found in the lipoprotein fractions, nor was it interacting with albumin. The investigation of isolated NPs and NPs/LPs physical mixtures provided a further insight into the lack of interaction of CholGem NPs with LPs. Although essential for allowing the self-assembly of the prodrug into nanoparticles, the lipid moiety may not be sufficient to elicit interaction of the conjugated drug with plasma lipoproteins but the whole NP physicochemical features must be carefully considered.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Timothée Naret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Catherine Cailleau
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France; Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Bastien Prost
- SAMM, UMS IPSIT, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Audrey Solgadi
- SAMM, UMS IPSIT, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Philippe Michel
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Magali Noiray
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.
| |
Collapse
|