1
|
Shabbir M, Imran M, Haider A, Shahzadi I, Ahmad W, Ul-Hamid A, Nabgan W, Shahzadi A, Al-Shanini A, Al-Anazy MM, Adam M, Ikram M. Efficient Samarium-Grafted-C 3N 4-Doped α-MoO 3 Used as a Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Study. ACS OMEGA 2023; 8:34805-34815. [PMID: 37779977 PMCID: PMC10535254 DOI: 10.1021/acsomega.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
This study was used to evaluate the catalytic activity (CA) and bactericidal activity of α-MoO3 and Sm-g-C3N4-doped α-MoO3 composites prepared through an efficient, cost-effective coprecipitation route. Their characteristic studies verify the formation of α-MoO3 and its composites (3, 6, and 9 mL Sm-g-C3N4-doped α-MoO3), which showed high crystallinity, as confirmed by X-ray diffraction (XRD) analysis. The production of superoxide and hydroxyl radicals due to charge transfer through α-MoO3 and g-C3N4 eventually forms electrons in g-C3N4 and holes around α-MoO3. CA against Rhodamine B (RhB) in basic medium provides maximum results compared to acidic and neutral media. The bactericidal efficacy of the (9 mL) doped sample represents a greater inhibition zone of 6.10 mm against the negative bacterial strain Escherichia coli. Furthermore, in silico studies showed that the generated nanorods may inhibit DNA gyrase and dihydropteroate synthase (DHPS) enzymes.
Collapse
Affiliation(s)
- Mohsin Shabbir
- Department
of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal 57000, Punjab, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal 57000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Punjab, Pakistan
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, Allama Iqbal Campus, University of Punjab, Lahore 54000, Pakistan
| | - Wakeel Ahmad
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum
& Minerals, Dhahran 31261, Saudi Arabia
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla 50511, Hadhramout, P. O. Box 50511, Yemen
| | - Murefah mana Al-Anazy
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Adam
- Department
of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
2
|
Jaffri SB, Ahmad KS, Thebo KH, Rehman F. Sustainability consolidation via employment of biomimetic ecomaterials with an accentuated photo-catalytic potential: emerging progressions. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Environmental pollution produced due to direct and untreated release of toxic organic pollutants such as dyes from the textile industries is not only effect the human life but also contaminates the ecosystem through different transferal modes. Green nanomaterials synthesized by using biological reducing agents offer sustainable, economically viable, facile, rapid and eco-friendly approach with photocatalytic degradation efficiencies >90% for organic dyes over the other traditional technologies. Current review has for the first time comprehensively abridged the suitability of green nanoparticles over chemogenic nanoparticles, the remediative role of these biogenic nanoparticles with major emphasis on the recent progressions in the photocatalysis of different toxic dyes and pollutants. Unlike physicochemically processed nanoparticles, biogenic nanoparticles has profound contribution to the sustainable development goals due to their cleaner and economical synthesis in addition to their detoxifying role. Meticulous review of the publications are strongly suggestive of the adoptability of biogenic nanoparticles at an implementation scale for their auspicious remediative role in addition to facile fabrication, natural reducing agents based synthetic mode, toxicity free and sustainable nature. However, the studies are also indicative of the need for utilization of biogenic synthesis at practical scale to derive maximum sustainability and ecological benefits.
Collapse
Affiliation(s)
- Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University , Rawalpindi , Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University , Rawalpindi , Pakistan
| | - Khalid Hussain Thebo
- University of Chinese Academy of Sciences (UCAS) , Beijing , People’s Republic of China
- Dr. M. Kazi Institute of Chemistry, University of Sindh , Jamshoro , Pakistan
| | - Faisal Rehman
- Department of Electrical Engineering , The Sukkur IBA University , Sukkur , Sindh , Pakistan
| |
Collapse
|