1
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
He Y, Chen S, Song W, Wu W, Rao Z, Wang X, Fang L, Shi J, Wang J. Targeted melanoma therapy: High-efficiency siRNA delivery with R8-PEI dissolvable microneedles. Int J Pharm 2025; 675:125516. [PMID: 40139450 DOI: 10.1016/j.ijpharm.2025.125516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Cutaneous melanoma, characterized by its high malignancy and propensity for early metastasis, has become one of the most lethal forms of skin cancer. RNA interference (RNAi) presents a promising therapeutic strategy for melanoma by using small interfering RNAs (siRNAs) to silence gene expression. However, the clinical application of RNAi is hindered by challenges associated with siRNA delivery, including degradation by nucleases, limited cellular uptake, and the barrier of the stratum corneum. In this study, we developed a carrier system comprising of polyethyleneimine (PEI) modified with octamer arginine (R8), a cell-penetrating peptide, and utilized this modified PEI to fabricate dissolvable microneedles loaded with siRNA (siRNA@R8-PEI/DMNs).The siRNA@R8-PEI/DMNs exhibited an excellent overall appearance, featuring a flat backing layer and a needle content of (93.92 ± 4.23)%. The microneedles demonstrated robust mechanical strength,with an overall force of (62.13 ± 8.93) N and a tip strength of (1.69 ± 0.37) N, facilitating effective penetration through the Parafilm®M membrane to a depth of approximately 380 μm. In vitro puncture tests on rat skin revealed a puncture rate exceeding 80%, indicating the system's strong capability to penetrate the skin. In vitro cellular experiments demonstrated that siRNA@R8-PEI effectively inhibited the proliferation of A375 cells by approximately 90% in a concentration-dependent manner. Additionally, the 24-hour cell migration rate was reduced to approximately 20%, and the gene silencing efficiency reached up to about 74%. In vivo studies further confirmed the therapeutic potential of siRNA@R8-PEI/DMNs, with a volumetric tumor inhibition rate of about 67%, inducing tumor cell apoptosis and reducing BRAF expression.siRNA@R8-PEI/DMNs offer a promising transdermal siRNA delivery system for cutaneous melanoma therapy, potentially providing novel insights into the development of safe and efficient transdermal siRNA delivery vectors. This study lays the groundwork for further exploration of RNAi-based therapeutics in dermatological oncology.
Collapse
Affiliation(s)
- Yaozhen He
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Songsen Chen
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Wenyang Song
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Wenhao Wu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Zhiqi Rao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Xiaodan Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Linrong Fang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Jun Shi
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China.
| | - Jiu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong High Education Institutes Engineering Research Center of Modified-released Pharmaceutical Products, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China.
| |
Collapse
|
3
|
Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, Alibolandi M. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 2024; 196:1685-1711. [PMID: 37402038 DOI: 10.1007/s12010-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.
Collapse
Affiliation(s)
- Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Fazeli
- Biomedicine Department, Aarhus University, Aarhus, Denmark
| | - Khalil Abnus
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Ma P, He M, Lian H, Li J, Gao Y, Wu J, Men K, Men Y, Li C. Systemic and Local Administration of a Dual-siRNA Complex Efficiently Inhibits Tumor Growth and Bone Invasion in Oral Squamous Cell Carcinoma. Mol Pharm 2024; 21:661-676. [PMID: 38175819 DOI: 10.1021/acs.molpharmaceut.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for nearly 90% of oral and oropharyngeal cancer cases and is characterized by high mortality and poor prognosis. RNA-based gene therapies have been developed as an emerging option for cancer treatment, but it has not been widely explored in OSCC. In this work, we developed an efficient siRNA cationic micelle DOTAP-mPEG-PCL (DMP) by self-assembling the cationic lipid DOTAP and monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) polymer. We tested the characteristics and transformation efficiency of this micelle and combined DMP with siRNA targeting STAT3 and TGF-β to evaluate the antitumor effect and bone invasion interfering in vitro and in vivo. The average size of the DMP was 28.27 ± 1.62 nm with an average zeta potential of 54.60 ± 0.29 mV. The DMP/siRNA complex showed high delivery efficiency, with rates of 97.47 ± 0.42% for HSC-3. In vitro, the DMP/siSTAT3 complex exhibited an obvious cell growth inhibition effect detected by MTT assay (an average cell viability of 25.1%) and clonogenic assay (an average inhibition rate of 51.9%). Besides, the supernatant from HSC-3 transfected by DMP/siTGF-β complexes was found to interfere with osteoclast differentiation in vitro. Irrespective of local or systemic administration, DMP/siSTAT3+siTGF-β showed antitumor effects and bone invasion inhibition in the OSCC mice mandibular invasion model according to tumor volume assays and Micro-CT scanning. The complex constructed by DMP cationic micelles and siSTAT3+siTGF-β represents a potential RNA-based gene therapy delivery system for OSCC.
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Mingxia He
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, 475004 Kaifeng, China
| | - Haosen Lian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Yi Men
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
5
|
Mohammadi N, Fayazi Hosseini N, Nemati H, Moradi-Sardareh H, Nabi-Afjadi M, Kardar GA. Revisiting of Properties and Modified Polyethylenimine-Based Cancer Gene Delivery Systems. Biochem Genet 2024; 62:18-39. [PMID: 37394575 DOI: 10.1007/s10528-023-10416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.
Collapse
Affiliation(s)
- Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Nemati
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Immunology Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
7
|
Molenda S, Sikorska A, Florczak A, Lorenc P, Dams-Kozlowska H. Oligonucleotide-Based Therapeutics for STAT3 Targeting in Cancer-Drug Carriers Matter. Cancers (Basel) 2023; 15:5647. [PMID: 38067351 PMCID: PMC10705165 DOI: 10.3390/cancers15235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/08/2024] Open
Abstract
High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.
Collapse
Affiliation(s)
- Sara Molenda
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Agata Sikorska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Patryk Lorenc
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
8
|
Huang J, Dai M, He M, Bu W, Cao L, Jing J, Cao R, Zhang H, Men K. Treatment of Ulcerative Colitis by Cationic Liposome Delivered NLRP3 siRNA. Int J Nanomedicine 2023; 18:4647-4662. [PMID: 37605735 PMCID: PMC10440093 DOI: 10.2147/ijn.s413149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Purpose The abnormal activation of NLRP3 inflammasome is related to the occurrence and development of ulcerative colitis (UC). However, the ideal drug and delivery system remain important factors limiting the targeting of NLRP3 inflammasome in UC therapy. Gene therapy by delivering siRNA is effective in treating various diseases. Therefore, delivering siNLRP3 using an ideal vector for UC treatment is necessary. Materials and Methods Nanoparticles delivering siNLRP3 were developed based on cationic liposome (CLP/siNLRP3). Their ability to inhibit NLRP3 inflammasome activation was monitored using Western blot (WB) and Enzyme-linked Immunosorbent Assay (ELISA). The ASC oligomerization in LPS-primed peritoneal macrophages (PMs) was detected by WB and immunofluorescence. Moreover, we assessed the role of CLP/siNLRP3 on dextran sodium sulfate (DSS)-induced UC by examining NLRP3 levels, pro-inflammatory cytokines expression, and disease-associated index (DAI). Flow cytometry (FCM) was used to detect the contents of macrophages and T cells. Finally, we assessed the safety of CLP/siNLRP3. Results The prepared CLP was spherical, with a small particle size (94 nm) and low permeability. The CLP could efficiently protect siNLRP3 from degradation and then deliver siNLRP3 into PMs, inhibiting NLRP3 inflammasome activation. Also, the CLP/siNLRP3 could inhibit the secretion of mature IL-1β and IL-18 from PMs, thereby achieving a favorable anti-inflammation effect. In vivo, CLP/siNLRP3 could effectively alleviate intestinal injury in UC mice, which was attributed to down-regulating levels of IL-1β and IL-18, inhibiting infiltration of macrophages and other immune cells, and the polarization of M1 macrophages. Finally, pathological testing of tissue sections and blood biochemical tests showed no significant toxic effects of CLP/siNLRP3. Conclusion We introduced a prospective approach for the efficient delivery of siRNA in vitro and in vivo with high safety and stability, which was found to have great potential in treating NLRP3-driven diseases in an RNA-silencing manner.
Collapse
Affiliation(s)
- Jing Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Mengmeng Dai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Mingxia He
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Weicheng Bu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Liwen Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Jing Jing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610044, People’s Republic of China
| |
Collapse
|
9
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
10
|
Pu Y, Ke H, Wu C, Xu S, Xiao Y, Han L, Lyv G, Li S. Superparamagnetic iron oxide nanoparticles target BxPC-3 cells and silence MUC4 for theranostics of pancreatic cancer. Biochim Biophys Acta Gen Subj 2023:130383. [PMID: 37236323 DOI: 10.1016/j.bbagen.2023.130383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Superparamagnetic iron oxide nanoparticles (SPION) are excellent magnetic resonance imaging (MRI) contrast agents. Mucin 4 (MUC4) acts as pancreatic cancer (PC) tumor antigen and influences PC progression. Small interfering RNAs (siRNAs) are used as a gene-silencing tool to treat a variety of diseases. METHODS We designed a therapeutic probe based on polyetherimide-superparamagnetic iron oxide nanoparticles (PEI-SPION) combined with siRNA nanoprobes (PEI-SPION-siRNA) to assess the contrast in MRI. The biocompatibility of the nanocomposite, and silencing of MUC4 were characterized and evaluated. RESULTS The prepared molecular probe had a particle size of 61.7 ± 18.5 nmand a surface of 46.7 ± 0.8mVand showed good biocompatibility in vitro and T2 relaxation efficiency. It can also load and protect siRNA. PEI-SPION-siRNA showed a good silencing effect on MUC4. CONCLUSION PEI-SPION-siRNA may be beneficial as a novel theranostic tool for PC.
Collapse
Affiliation(s)
- Yu Pu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China; Department of Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College. No. 234, Fujiang Road, Shunqing District, Nanchong City 637000, People's Republic of China; Department of Medicine, Quanzhou Medical College, No. 2 Anji Road, Luojiang District, Quanzhou 362000, People's Republic of China
| | - Helin Ke
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Changqiang Wu
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China
| | - Shaodan Xu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Yang Xiao
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Lina Han
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Guorong Lyv
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China.
| | - Shilin Li
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China.
| |
Collapse
|
11
|
You S, Luo Z, Cheng N, Wu M, Lai Y, Wang F, Zheng X, Wang Y, Liu X, Liu J, Zhao B. Magnetically responsive nanoplatform targeting circRNA circ_0058051 inhibits hepatocellular carcinoma progression. Drug Deliv Transl Res 2023; 13:782-794. [PMID: 36114310 PMCID: PMC9892167 DOI: 10.1007/s13346-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) are a class of highly stable and closed-loop noncoding RNA that are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, little is known about the therapeutic role of circRNAs in HCC. We found that high circ_0058051 expression was negatively correlated with the prognosis of HCC patients. Circ_0058051 knockdown attenuated the proliferation and colony formation, meanwhile inhibited migration of HCC cells. Circ_0058051 may be used as a target for HCC gene therapy. We synthesized a novel small interfering RNA (siRNA) delivery system, PEG-PCL-PEI-C14-SPIONs (PPPCSs), based on superparamagnetic iron oxide nanoparticles (SPIONs). PPPCSs protected the siRNA of circ_0058051 from degradation in serum and effectively delivered siRNA into SMMC-7721 cells. Meanwhile, intravenous injection of the PPPCSs/siRNA complex could inhibit tumor growth in the subcutaneous tumor model. In addition, the nanocomposite is not toxic to the organs of nude mice. The above results show that PPPCSs/si-circ_0058051 complex may provide a novel and promising method of HCC treatment.
Collapse
Affiliation(s)
- Song You
- Department of Hepatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zijin Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yongping Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Jingfeng Liu
- Department of Hepatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| |
Collapse
|
12
|
Mandal D, Lohan S, Sajid MI, Alhazza A, Tiwari RK, Parang K, Montazeri Aliabadi H. Modified Linear Peptides Effectively Silence STAT-3 in Breast Cancer and Ovarian Cancer Cell Lines. Pharmaceutics 2023; 15:666. [PMID: 36839988 PMCID: PMC9962452 DOI: 10.3390/pharmaceutics15020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the β-alanine (βA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-βA-βA-W4-βA-βA-R4-CO-NH2 and Ac-K-βA-βA-W4-βA-βA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and PEG550. Alternatively, the side chain of lysine in the second sequence was used for conjugation with cholesterol or oleic acid. We hypothesized that amphiphilic peptides and optimum fatty acyl chain or PEG could function as an effective siRNA carrier by complementing each structural component's self-assembly and membrane internalization properties. None of the designed peptides showed cytotoxicity up to 10 µM. Serum stability studies suggested that the newly designed peptides efficiently protected siRNA against early degradation by nucleases. Flow cytometry analysis indicated 50-90% cellular uptake of siRNA using the newly developed modified linear peptides (MLPs). Western blot results revealed more than 90% protein downregulation after targeting STAT3 in MDA-MB-231 and SKOV-3 cell lines. In summary, a new peptide class was developed to safely and efficiently deliver siRNA.
Collapse
Affiliation(s)
- Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Abdulelah Alhazza
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 76313, Saudi Arabia
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
13
|
Construction of a miRNA-mRNA Network Related to Exosomes in Colon Cancer. DISEASE MARKERS 2022; 2022:2192001. [PMID: 35845138 PMCID: PMC9277152 DOI: 10.1155/2022/2192001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Background The competing endogenous RNA (CeRNA) network plays important roles in the occurrence and development of colon cancer. This research is aimed at constructing a miRNA-mRNA network associated with exosomes in colon cancer. Methods We explored the GEO database and then analyzed the RNAs of 722 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of colon cancer. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEM target genes and DEGs were performed. In addition, a miRNA-mRNA network related to exosomes in colon cancer was constructed based on DEMs and DEGs. Finally, the expression of miRNA and mRNA in the network was verified by GEPIA2 on the base of TCGA database. Results Through our analysis, 19 DEMs (17 up and 2 down) and 1672 DEGs (954 up and 718 down) were screened. The GO and KEGG results show that these DEGs were mainly enriched in ribonucleoprotein complex biogenesis, noncoding RNA metabolic process, cell-substrate junction, cadherin binding, transcription coregulator activity, and regulation of the human T-cell leukemia virus 1 infection-related pathway. Besides, a miRNA-mRNA network, including 4 miRNAs (hsa-miR-623, hsa-miR-320c, hsa-miR-486-5p, and hsa-miR-1290) and 7 mRNAs (GNAI1, CADM1, PGRMC2, etc.), was constructed. Three of these seven mRNAs were downregulated in colon cancer. Ultimately, the GNAI1, CADM1, and PGRMC2 expression levels were verified by TCGA database. Conclusions This study reveals the network relationship between colon cancer exosome-derived miRNA and targeted mRNA. It deepens our understanding of new molecular mechanisms and pathways that may play a role in the occurrence and metastasis of colon cancer.
Collapse
|
14
|
Mandal D, Mohammed EHM, Lohan S, Mandipoor P, Baradaran D, Tiwari RK, Parang K, Aliabadi HM. Redox-Responsive Disulfide Cyclic Peptides: A New Strategy for siRNA Delivery. Mol Pharm 2022; 19:1338-1355. [PMID: 35347995 DOI: 10.1021/acs.molpharmaceut.1c00879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA interference (RNAi) is a powerful tool capable of targeting virtually any protein without time-consuming and expensive drug development studies. However, due to obstacles facing efficient and safe delivery, RNAi-based therapeutic approach remains a challenge. Herein, we have designed and synthesized a number of disulfide-constraining cyclic and hybrid peptides using tryptophan and arginine residues. Our hypothesis was that peptide structures would undergo reduction by intracellular glutathione (more abundant in cancer cells) and unpack the small interfering RNA (siRNA) from the peptide/siRNA complexes. A subset of newly developed peptides (specifically, C4 and H4) exhibited effective cellular internalization of siRNA (∼70% of the cell population; monitored by flow cytometry and confocal microscopy), the capability of protecting siRNA against early degradation by nucleases (monitored by gel electrophoresis), minimal cytotoxicity in selected cell lines (studied by cell viability and LC50 calculations), and efficient protein silencing by 70-75% reduction in the expression of targeting signal transducer and activator of transcription 3 (STAT3) in human triple-negative breast cancer (TNBC) MDA-MB-231 cells, analyzed using the Western blot technique. Our results indicate the birth of a promising new family of siRNA delivery systems that are capable of safe and efficient delivery, even in the presence of nucleases.
Collapse
Affiliation(s)
- Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- AJK Biopharmaceutical, 5270 California Avenue, Irvine, California 92617, United States
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Eman H M Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam 51132, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- AJK Biopharmaceutical, 5270 California Avenue, Irvine, California 92617, United States
| | - Parvin Mandipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Darius Baradaran
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
15
|
Sajid MI, Mandal D, El-Sayed NS, Lohan S, Moreno J, Tiwari RK. Oleyl Conjugated Histidine-Arginine Cell-Penetrating Peptides as Promising Agents for siRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14040881. [PMID: 35456715 PMCID: PMC9028392 DOI: 10.3390/pharmaceutics14040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Recent approvals of siRNA-based products motivated the scientific community to explore siRNA as a treatment option for several intractable ailments, especially cancer. The success of approved siRNA therapy requires a suitable and safer drug delivery agent. Herein, we report a series of oleyl conjugated histidine–arginine peptides as a promising nonviral siRNA delivery tool. The conjugated peptides were found to bind with the siRNA at N/P ratio ≥ 2 and demonstrated complete protection for the siRNA from early enzymatic degradation at N/P ratio ≥ 20. Oleyl-conjugated peptide -siRNA complexes were found to be noncytotoxic in breast cancer cells (MCF-7 and MDA-MB-231) and normal breast epithelial cells (MCF 10A) at N/P ratio of ~40. The oleyl-R3-(HR)4 and oleyl-R4-(HR)4 showed ~80-fold increased cellular uptake in MDA-MB-231 cells at N/P 40. Moreover, the conjugated peptides-siRNA complexes form nanocomplexes (~115 nm in size) and have an appropriate surface charge to interact with the cell membrane and cause cellular internalization. Furthermore, this study provides a proof-of-concept that oleyl-R5-(HR)4 can efficiently silence STAT-3 gene (~80% inhibition) in MDA-MB-231 cells with similar effectiveness to Lipofectamine. Further exploration of this approach holds a great promise in discovering a successful in vivo siRNA delivery agent with a favorable pharmacokinetic profile.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
| | - Jonathan Moreno
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Correspondence: ; Tel.: +1-(714)-516-5483; Fax: +1-(714)-516-5481
| |
Collapse
|
16
|
Dual-RNA controlled delivery system inhibited tumor growth by apoptosis induction and TME activation. J Control Release 2022; 344:97-112. [DOI: 10.1016/j.jconrel.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
|
17
|
Li J, Men K, Gao Y, Wu J, Lei S, Yang Y, Pan H. Single Micelle Vectors based on Lipid/Block Copolymer Compositions as mRNA Formulations for Efficient Cancer Immunogene Therapy. Mol Pharm 2021; 18:4029-4045. [PMID: 34559545 DOI: 10.1021/acs.molpharmaceut.1c00461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunogene therapy provides a new strategy for the treatment of colorectal cancer. Compared to plasmid DNA, mRNA possesses several advantages as a therapeutic nucleic acid material and shows high potential in cancer therapy. Although efforts have been made to conquer the limited efficiency of mRNA delivery, most of the current mRNA vectors possess complex structures or compositions, which introduces additional toxicity and hinders their further clinical application. Hence, it is highly necessary to develop potent mRNA delivery systems with simple structures. Here, we report efficient mRNA delivery using the biodegradable micelle delivery system of DMP (DOTAP-mPEG-PCL). Biodegradable DMP micelles were simply prepared by the self-assembly of cationic lipid DOTAP and the diblock polymer monomethoxy poly(ethylene glycol)-poly(ε-caprolactone). With an average size of only 30 nm, we proved that these single-structured cationic micelles are highly potent in condensing and protecting mRNA molecules, with a delivery efficiency of 60.59% on C26 mouse colon cancer cells. The micelles triggered specific internalization pathways and were fully degraded in vivo. After binding with IL-22BP (interleukin-22 binding protein)-encoding mRNA, a strongly elevated IL-22BP mRNA level was detected in C26 cells. After intraperitoneal and intratumoral injection of the DMP/mIL-22BP complex, strong inhibition effects on C26 colon cancer models were observed, with high therapeutic efficiency and safety when systemically administrated. These data suggest that the DMP micelle is an advanced single-structured mRNA delivery system with high safety.
Collapse
Affiliation(s)
- Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Haixia Pan
- Oncology Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| |
Collapse
|
18
|
Zhang X, Cai A, Gao Y, Zhang Y, Duan X, Men K. Treatment of Melanoma by Nano-conjugate-Delivered Wee1 siRNA. Mol Pharm 2021; 18:3387-3400. [PMID: 34375118 DOI: 10.1021/acs.molpharmaceut.1c00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA)-based drugs have shown tremendous potential to date in cancer gene therapy. Despite the considerable efforts in siRNA design and manufacturing, unsatisfactory delivery systems persist as a limitation for the application of siRNA-based drugs. In this work, the cholesterol, cell-penetrating peptide conjugate cRGD (R8-cRGD), and polyethylene glycol (PEG) were introduced into low-molecular-weight polyethyleneimine (LMW PEI) to form cRGD-R9-cholesterol-PEI-PEG (RRCPP) nanoparticles with specific targeting and highly penetrating abilities. The enhanced siRNA uptake efficiency of the RRCPP delivery system benefited from R8-cRGD modification. Wee1 is an oncogenic nuclear kinase that can regulate the cell cycle as a crucial G2/M checkpoint. Overexpression of Wee1 in melanoma may lead to a poor prognosis. In the present study, RRCPP nanoparticles were designed for Wee1 siRNA delivery to form an RRCPP/siWee1 complex, which significantly silenced the expression of the WEE1 gene (>60% inhibition) and induced B16 tumor cell apoptosis by abrogating the G2M checkpoint and DNA damage in vitro. Furthermore, the RRCPP/siWee1 complex suppressed B16 tumor growth in a subcutaneous xenograft model (nearly 85% inhibition rate) and lung metastasis (nearly 66% inhibition rate) with ideal in vivo safety. Briefly, our results support the validity of RRCPP as a potential Wee1 siRNA carrier for melanoma gene therapy.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Anqi Cai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuanfa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
19
|
Li Q, Cen B, Huang W, Chen J, Chen Z, Pang J, Fu W, He S, Ji A. [Development and functional validation of a nano-delivery system of miR-16/polypeptide targeting ovarian cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:736-746. [PMID: 34134962 DOI: 10.12122/j.issn.1673-4254.2021.05.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To develop a nano-delivery system for targeted delivery of miR-16/polypeptide for enhancing cisplatin sensitivity of ovarian cancer. OBJECTIVE R9-SS-R9 and cRGD-R9-SS-R9 peptides were synthesized and self-assembled with miR-16 molecules to form a nano-delivery system. The stability, particle size, potential and morphology of the nanoparticles were determined by agarose gel electrophoresis, particle size potentiometer and transmission electron microscopy. CCK-8 assay was used to assess the toxicity of the polypeptides in ovarian cancer cells. Stem loop qRT-PCR and living cell imaging were used to verify the uptake efficiency and intracellular distribution of the nanoparticles. Flow cytometry and Western blotting were performed to verify the effect of the nanoparticles for enhancing cisplatin sensitivity of ovarian cancer cells and explore the possible mechanism. OBJECTIVE R9-SS-R9/miR-16 and cRGD-R9-SS-R9/miR-16 nanoparticles were successfully prepared. The nanoparticles, with a particle size below 150 nm, a dispersity index less than 0.1 and a potential of about 40 mV, showed a good serum stability. The polypeptide material had no obvious cytotoxicity. The miR-16/polypeptide nanoparticles could be efficiently absorbed by human ovarian cancer cells and were distributed in the cytoplasm. The nanoparticles significantly increased the intracellular expression level of miR-16 (P < 0.001) and decreased the expression of Bcl-2 and Chk-1 proteins in ovarian cancer cells, thus enabling miR-16 to promote apoptosis and enhance cisplatin sensitivity of the cells. OBJECTIVE We successfully prepared a miR-16/polypeptide nano-delivery system for targeted delivery of miR-16 to ovarian cancer cells for enhancing cisplatin sensitivity of the cancer cells.
Collapse
Affiliation(s)
- Q Li
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China.,Department of Pharmacy, Nanhai Hospital Affiliated to Southern Medical University, Foshan 528200, China
| | - B Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 510095, China
| | - W Huang
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - J Chen
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Z Chen
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - J Pang
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - W Fu
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - S He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - A Ji
- Department of Pharmacy, Nanhai Hospital Affiliated to Southern Medical University, Foshan 528200, China
| |
Collapse
|
20
|
|
21
|
Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: Current status with an emphasis on delivery systems. Life Sci 2021; 275:119368. [PMID: 33741417 DOI: 10.1016/j.lfs.2021.119368] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the worst brain tumors arising from glial cells, causing many deaths annually. Surgery, chemotherapy, radiotherapy and immunotherapy are used for GBM treatment. However, GBM is still an incurable disease, and new approaches are required for its successful treatment. Because mutations and amplifications occurring in several genes are responsible for the progression and aggressive behavior of GBM cells, genetic approaches are of great importance in its treatment. Small interfering RNA (siRNA) is a new emerging tool to silence the genes responsible for disease progression, particularly cancer. SiRNA can be used for GBM treatment by down-regulating genes such as VEGF, STAT3, ELTD1 or EGFR. Furthermore, the use of siRNA can promote the chemosensitivity of GBM cells. However, the efficiency of siRNA in GBM is limited via its degradation by enzymes, and its off-targeting effects. SiRNA-loaded carriers, especially nanovehicles that are ligand-functionalized by CXCR4 or angiopep-2, can be used for the protection and targeted delivery of siRNA. Nanostructures can provide a platform for co-delivery of siRNA plus anti-tumor drugs as another benefit. The prepared nanovehicles should be stable and biocompatible in order to be tested in human studies.
Collapse
|