1
|
Zhao Q, Wu T, Tang C, Li J, Wu M, Wu J, Wang Z, Zhu Y, Xu H, Li X. Biomimetic nanocrystals co-deliver paclitaxel and small-molecule LF3 for ferroptosis-combined chemotherapy for gastric cancer. Colloids Surf B Biointerfaces 2025; 251:114586. [PMID: 40010081 DOI: 10.1016/j.colsurfb.2025.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Combination chemotherapy is considered more effective than monotherapy in enhancing clinical outcomes. Ferroptosis, a unique form of regulated cell death, has been demonstrated to inhibit tumor growth and progression. Consequently, combining ferroptosis with chemotherapy represents a promising and innovative approach to antitumor therapy. In this study, we developed a novel TMTP1-modified biomimetic nanocrystal (TRNC@P + L) for the co-delivery of PTX and LF3, aiming to achieve ferroptosis-combined chemotherapy in gastric cancer. TRNC@P + L, which incorporates a tumor-homing peptide-modified red blood cell membrane, demonstrated efficient tumor targeting, prolonged circulation, enhanced drug bioavailability, and reduced non-specific toxicities of free PTX and LF3. By utilizing the synergistic effects of PTX and LF3, TRNC@P + L combination therapy significantly inhibited tumor growth, as demonstrated by both in vitro and in vivo studies. Mechanistically, TRNC@P + L triggers ferroptosis in tumor cells by downregulating GPX4 expression, the promotion of ROS accumulation, and the enhancement of lipid peroxidation. These processes synergistically enhance the anticancer efficacy of PTX.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Ting Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Jie Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Yinxin Zhu
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Zhao Q, Gu M, Ni M, Li J, Wu T, Zhu S, Zhou Y, Lu Y, Li X, Xu H, Lu M. ROS responsive hydrogel for inhibition of MUC5AC against allergic rhinitis: A new delivery strategy for Ipratropium Bromide. Colloids Surf B Biointerfaces 2024; 242:114112. [PMID: 39047643 DOI: 10.1016/j.colsurfb.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Allergic rhinitis (AR) is a chronic inflammatory disease of the nasal mucosa mediated by immunoglobulin E (IgE) after exposure to allergens. The bothersome symptoms of AR, such as runny nose and nasal congestion, affect millions of people worldwide. Ipratropium Bromide (IB), commonly used in clinical practice for treating AR, requires frequent administration through nasal spray and may cause significant irritation to the nasal mucosa. The induction of ROS is closely related to the initiation and symptoms of AR, and ROS will continue to accumulate during the onset of AR. To address these challenges, we have designed a drug delivery system that can be administered in liquid form and rapidly crosslink into a ROS-responsive gel in the nasal cavity. This system enables sustained ROS responsive release of IB in a high-concentration ROS environment at AR lesions, thereby alleviating AR symptoms. The gel demonstrated prolonged release of IB for up to 24 hours in rats. In the treatment of AR rat models, it improved their symptoms, reduced the expression of various inflammatory factors, suppressed MUC5AC protein expression, and decreased mucus secretion through a ROS responsive IB release pattern. Overall, this system holds promise as a better option for AR treatment and may inspire the design of nanogel-based nasal drug delivery systems.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Min Gu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengnan Ni
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Senlin Zhu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yupeng Zhou
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yawen Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Meiping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Modabber N, Mahboub SS, Khoshravesh S, Karimpour F, Karimi A, Goodarzi V. Evaluation of Long Non-coding RNA (LncRNA) in the Pathogenesis of Chemotherapy Resistance in Cervical Cancer: Diagnostic and Prognostic Approach. Mol Biotechnol 2024; 66:2751-2768. [PMID: 37804407 DOI: 10.1007/s12033-023-00909-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Cervical cancer (CC), caused by human papillomavirus (HPV), is a leading cause of female malignancies worldwide. Therefore, understanding the underlying mechanisms of CC development and identifying novel therapeutic targets are significantly important. Cisplatin resistance is a significant challenge in the management of CC. Recent studies highlighted the critical role of long non-coding RNAs (lncRNAs) in modulation of cisplatin resistance. This comprehensive review aims to collect the current understanding roles of lncRNAs and their involvement in cisplatin resistance in CC by highlighting key processes of cancer progression, including apoptosis, proliferation, angiogenesis and epithelial-to-mesenchymal transition (EMT). We discussed the role of lncRNA in CC resistance to cisplatin through molecular pathways and examined gene expression changes. We also discussed treatment strategies and factors that reduce CC resistance to cisplatin by targeting them.
Collapse
Affiliation(s)
- Noushin Modabber
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Sadat Mahboub
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Karimpour
- Cancer Reserch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anita Karimi
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
5
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
6
|
Zhou Y, Wei R, Wang L, Li J, Wang W, Jiang G, Tan S, Li F, Wang X, Ma X, Xi L. Tumor targeting peptide TMTP1 modified Antigen capture Nano-vaccine combined with chemotherapy and PD-L1 blockade effectively inhibits growth of ovarian cancer. J Nanobiotechnology 2024; 22:483. [PMID: 39138475 PMCID: PMC11320875 DOI: 10.1186/s12951-024-02744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The mortality of ovarian cancer (OC) has long been the highest among gynecological malignancies. Although OC is considered to be an immunogenic tumor, the effect of immunotherapy is not satisfactory. The immunosuppressive microenvironment is one reason for this, and the absence of recognized effective antigens for vaccines is another. Chemotherapy, as one of the most commonly used treatment for OC, can produce chemotherapy-associated antigens (CAAs) during treatment and show the effect of in situ vaccine. Herein, we designed an antigen capture nano-vaccine NP-TP1@M-M with tumor targeting peptide TMTP1 and dendritic cell (DC) receptor mannose assembled on the surface and adjuvant monophosphoryl lipid A (MPLA) encapsulated in the core of poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles. PLGA itself possessed the ability of antigen capture. TMTP1 was a tumor-homing peptide screened by our research team, which held extensive and excellent tumor targeting ability. After these modifications, NP-TP1@M-M could capture and enrich more tumor-specific antigens after chemotherapy, stimulate DC maturation, activate the adaptive immunity and combined with immune checkpoint blockade to maximize the release of the body's immune potential, providing an eutherapeutic strategy for the treatment of OC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiying Jiang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Lai Y, Lin Y. Biological functions and therapeutic potential of CKS2 in human cancer. Front Oncol 2024; 14:1424569. [PMID: 39188686 PMCID: PMC11345170 DOI: 10.3389/fonc.2024.1424569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The incidence of cancer is increasing worldwide and is the most common cause of death. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Cyclin-dependent kinase subunit 2 (CKS2) is involved in cell cycle and proliferation processes, and based on these processes, CKS2 was identified as a cancer gene. CKS2 is expressed in a variety of tissues in the human body, but its abnormal expression is associated with cancer in a variety of systems. CKS2 is generally elevated in cancer, plays a role in almost all aspects of cancer biology (such as cell proliferation, invasion, metastasis, and drug resistance) through multiple mechanisms regulating certain important genes, and is associated with clinicopathological features of patients. In addition, CKS2 expression patterns are closely related to cancer type, stage and other clinical variables. Therefore, CKS2 is considered as a tool for cancer diagnosis and prognosis and may be a promising tumor biomarker and therapeutic target. This article reviews the biological function, mechanism of action and potential clinical significance of CKS2 in cancer, in order to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy and scientific research of cancer.
Collapse
Affiliation(s)
- Yueliang Lai
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Ye Lin
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Cao S, Wei Y, Yao Z, Yue Y, Deng J, Xu H, Sheng W, Yu F, Liu P, Xiong A, Zeng H. A bibliometric and visualized analysis of nanoparticles in musculoskeletal diseases (from 2013 to 2023). Comput Biol Med 2024; 169:107867. [PMID: 38141451 DOI: 10.1016/j.compbiomed.2023.107867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
As the pace of research on nanomedicine for musculoskeletal (MSK) diseases accelerates, there remains a lack of comprehensive analysis regarding the development trajectory, primary authors, and research focal points in this domain. Additionally, there's a need of detailed elucidation of potential research hotspots. The study gathered articles and reviews focusing on the utilization of nanoparticles (NPs) for MSK diseases published between 2013 and 2023, extracted from the Web of Science database. Bibliometric and visualization analyses were conducted using various tools such as VOSviewer, CiteSpace, Pajek, Scimago Graphica, and the R package. China, the USA, and India emerged as the key drivers in this research domain. Among the numerous institutions involved, Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University exhibited the highest productivity levels. Vallet-Regi Maria emerged as the most prolific author in this field. International Journal of Nanomedicine accounted for the largest number of publications in this area. The top five disorders of utmost significance in this field include osteosarcoma, cartilage diseases, bone fractures, bone neoplasms, and joint diseases. These findings are instrumental in providing researchers with a comprehensive understanding of this domain and offer valuable perspectives for future investigations.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Zhi Yao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Huihui Xu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Weibei Sheng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Fei Yu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Ao Xiong
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Kiseleva M, Lescot T, Selivanova SV, Fortin M. Gold-Enhanced Brachytherapy by a Nanoparticle-Releasing Hydrogel and 3D-Printed Subcutaneous Radioactive Implant Approach. Adv Healthc Mater 2023; 12:e2300305. [PMID: 37094373 PMCID: PMC11469283 DOI: 10.1002/adhm.202300305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Brachytherapy (BT) is a widely used clinical procedure for localized cervical cancer treatment. In addition, gold nanoparticles (AuNPs) have been demonstrated as powerful radiosensitizers in BT procedures. Prior to irradiation by a BT device, their delivery to tumors can enhance the radiation effect by generating low-energy photons and electrons, leading to reactive oxygen species (ROS) production, lethal to cells. No efficient delivery system has been proposed until now for AuNP topical delivery to localized cervical cancer in the context of BT. This article reports an original approach developed to accelerate the preclinical studies of AuNP-enhanced BT procedures. First, an AuNP-containing hydrogel (Pluronic F127, alginate) is developed and tested in mice for degradation, AuNP release, and biocompatibility. Then, custom-made 3D-printed radioactive BT inserts covered with a AuNP-containing hydrogel cushion are designed and administered by surgery in mice (HeLa xenografts), which allows for measuring AuNP penetration in tumors (≈100 µm), co-registered with the presence of ROS produced through the interactions of radiation and AuNPs. Biocompatible AuNPs-releasing hydrogels could be used in the treatment of cervical cancer prior to BT, with impact on the total amount of radiation needed per BT treatment, which will result in benefits to the preservation of healthy tissues surrounding cancer.
Collapse
Affiliation(s)
- Mariia Kiseleva
- Département de Génie des Minesde la Métallurgie et des MatériauxCentre de Recherche sur les Matériaux Avancés (CERMA)Université LavalQuébecG1V 0A6Canada
- Laboratoire de Biomatériaux pour l'Imagerie MédicaleAxe Médecine RégénératriceCentre de Recherche du CHU de Québec – Université LavalQuébecG1V 4G2Canada
| | - Théophraste Lescot
- Département de Génie des Minesde la Métallurgie et des MatériauxCentre de Recherche sur les Matériaux Avancés (CERMA)Université LavalQuébecG1V 0A6Canada
- Laboratoire de Biomatériaux pour l'Imagerie MédicaleAxe Médecine RégénératriceCentre de Recherche du CHU de Québec – Université LavalQuébecG1V 4G2Canada
| | - Svetlana V. Selivanova
- Faculty of PharmacyUniversité LavalQuébecG1V 0A6Canada
- Axe OncologieCentre de Recherche du CHU de Québec – Université LavalQuébecG1R 3S3Canada
| | - Marc‐André Fortin
- Département de Génie des Minesde la Métallurgie et des MatériauxCentre de Recherche sur les Matériaux Avancés (CERMA)Université LavalQuébecG1V 0A6Canada
- Laboratoire de Biomatériaux pour l'Imagerie MédicaleAxe Médecine RégénératriceCentre de Recherche du CHU de Québec – Université LavalQuébecG1V 4G2Canada
| |
Collapse
|
10
|
Liu FY, Ding DN, Wang YR, Liu SX, Peng C, Shen F, Zhu XY, Li C, Tang LP, Han FJ. Icariin as a potential anticancer agent: a review of its biological effects on various cancers. Front Pharmacol 2023; 14:1216363. [PMID: 37456751 PMCID: PMC10347417 DOI: 10.3389/fphar.2023.1216363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Numerous chemical compounds used in cancer treatment have been isolated from natural herbs to address the ever-increasing cancer incidence worldwide. Therein is icariin, which has been extensively studied for its therapeutic potential due to its anti-inflammatory, antioxidant, antidepressant, and aphrodisiac properties. However, there is a lack of comprehensive and detailed review of studies on icariin in cancer treatment. Given this, this study reviews and examines the relevant literature on the chemopreventive and therapeutic potentials of icariin in cancer treatment and describes its mechanism of action. The review shows that icariin has the property of inhibiting cancer progression and reversing drug resistance. Therefore, icariin may be a valuable potential agent for the prevention and treatment of various cancers due to its natural origin, safety, and low cost compared to conventional anticancer drugs, while further research on this natural agent is needed.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan-Ni Ding
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun-Rui Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Xuan Liu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cheng Peng
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Shen
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ya Zhu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li-Ping Tang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, Chen H, Cheng T, Zhou Y, Wei X, Li F, Ma D, Tan S, Wei R, Xi L. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy. J Nanobiotechnology 2023; 21:130. [PMID: 37069646 PMCID: PMC10108508 DOI: 10.1186/s12951-023-01883-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND TMVP1 is a novel tumor targeting polypeptide screened by our laboratory with a core sequence of five amino acids LARGR. It specially binds to vascular endothelial growth factor receptor-3 (VEGFR-3), which is mainly expressed on neo-lymphatic vessels in sentinel lymph node (SLN) with tumor metastasis in adults. Here, we prepared a targeted nanoprobe using TMVP1-modified nanomaterials for tumor metastasis SLN imaging. RESULTS In this study, TMVP1-modified polymer nanomaterials were loaded with the near-infrared (NIR) fluorescent dye, indocyanine green (ICG), to prepare a molecular imaging TMVP1-ICG nanoparticles (NPs) to identify tumor metastasis in SLN at molecular level. TMVP1-ICG-NPs were successfully prepared using the nano-precipitation method. The particle diameter, morphology, drug encapsulation efficiency, UV absorption spectrum, cytotoxicity, safety, and pharmacokinetic properties were determined. The TMVP1-ICG-NPs had a diameter of approximately 130 nm and an ICG loading rate of 70%. In vitro cell experiments and in vivo mouse experiments confirmed that TMVP1-ICG-NPs have good targeting ability to tumors in situ and to SLN with tumor metastasis by binding to VEGFR-3. Effective photothermal therapy (PTT) with TMVP1-ICG-NPs was confirmed in vitro and in vivo. As expected, TMVP1-ICG-NPs improved ICG blood stability, targeted tumor metastasis to SLN, and enhanced PTT/photodynamic (PDT) therapy, without obvious cytotoxicity, making it a promising theranostic nanomedicine. CONCLUSION TMVP1-ICG-NPs identified SLN with tumor metastasis and were used to perform imaging-guided PTT, which makes it a promising strategy for providing real-time NIR fluorescence imaging and intraoperative PTT for patients with SLN metastasis.
Collapse
Affiliation(s)
- Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Geyang Dai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Guiying Jiang
- Department of Gynecology, West China Second University Hospital, Chengdu, 610000, China
| | - Danya Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ling Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wen Zhang
- Hubei University of Medicine, Shiyan, 442000, China
| | - Huang Chen
- School of Medicine, Jianghan University, Wuhan, 430000, China
| | - Teng Cheng
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiao Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
12
|
Huang X, Liu W, Liu C, Hu J, Wang B, Ren A, Huang X, Yuan Y, Liu J, Li M. CMTM6 as a candidate risk gene for cervical cancer: Comprehensive bioinformatics study. Front Mol Biosci 2022; 9:983410. [PMID: 36589225 PMCID: PMC9798917 DOI: 10.3389/fmolb.2022.983410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background: CKLF like MARVEL transmembrane domain containing 6 (CMTM6) is an important programmed cell death 1 ligand 1 regulator (PD-L1). CMTM6 was reported as an important regulator of PD-L1 by promoting PD-L1 expression in tumor cells against T cells. However, the function of CMTM6 in cervical cancer is not well characterized. In addition, the role of CMTM6 in the induction of epithelial-mesenchymal transition (EMT) in the context of cervical cancer is unknown. Methods: In this study, we evaluated the role of CMTM6, including gene expression analysis, miRNA target regulation, and methylation characteristic, using multiple bioinformatics tools based on The Cancer Genome Atlas (TCGA) database. The expression of CMTM6 in cervical cancer tissues and non-cancerous adjacent tissues was assessed using immunohistochemistry. In vitro and in vivo function experiments were performed to explore the effects of CMTM6 on growth and metastasis of cervical cancer. Results: Human cervical cancer tissues showed higher expression of CMTM6 than the adjacent non-cancerous tissues. In vitro assays showed that CMTM6 promoted cervical cancer cell invasion, migration, proliferation, and epithelial-mesenchymal transition via activation of mitogen-activated protein kinase (MAPK) c-jun N-terminal kinase (JNK)/p38 signaling pathway. We identified transcription factors (TFs), miRNAs, and immune cells that may interact with CMTM6. Conclusion: These results indicate that CMTM6 is a potential therapeutic target in the context of cervical cancer.
Collapse
Affiliation(s)
- Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaona Huang
- TCM Hospital of Liwan District, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Ranasinghe R, Mathai ML, Zulli A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon 2022; 8:e10608. [PMID: 36158077 PMCID: PMC9489975 DOI: 10.1016/j.heliyon.2022.e10608] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Cisplatin spearheads the anticancer chemotherapeutics in present-day use although acute toxicity is its primary impediment factor. Among a plethora of experimental medications, a drug as effective or surpassing the benefits of cisplatin has not been discovered yet. Although Oxaliplatin is considered more superior to cisplatin, the former has been better for colorectal cancer while cisplatin is widely used for treating gynaecological cancers. Carcinoma imposes a heavy toll on mortality rates worldwide despite the novel treatment strategies and detection methods that have been introduced; nanomedicine combined with precision medicine, immunotherapy, volume-regulated anion channels, and fluorodeoxyglucose-positron emission tomography. Millions of deaths occur annually from metastatic cancers which escape early detection and the concomitant diseases caused by highly toxic chemotherapy that causes organ damage. It continues due to insufficient knowledge of the debilitative mechanisms induced by cancer biology. To overcome chemoresistance and to attenuate the adverse effects of cisplatin therapy, both in vitro and in vivo models of cisplatin-treated cancers and a few multi-centred, multi-phasic, randomized clinical trials in pursuant with recent novel strategies have been tested. They include plant-based phytochemical compounds, de novo drug delivery systems, biochemical/immune pathways, 2D and 3D cell culture models using small molecule inhibitors and genetic/epigenetic mechanisms, that have contributed to further the understanding of cisplatin's role in modulating the tumour microenvironment. Cisplatin was beneficial in cancer therapy for modulating the putative cellular mechanisms; apoptosis, autophagy, cell cycle arrest and gene therapy of micro RNAs. Specific importance of drug influx, efflux, systemic circulatory toxicity, half-maximal inhibition, and the augmentation of host immunometabolism have been identified. This review offers a discourse on the recent anti-neoplastic treatment strategies to enhance cisplatin efficacy and to overcome chemoresistance, given its superiority among other tolerable chemotherapies.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Michael L. Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| |
Collapse
|
14
|
Comprehensive Expression Profiling and Molecular Basis of CDC28 Protein Kinase Regulatory Subunit 2 in Cervical Cancer. Int J Genomics 2022; 2022:6084549. [PMID: 35935749 PMCID: PMC9352497 DOI: 10.1155/2022/6084549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
More and more evidence suggests the oncogenic function of overexpressed CDC28 protein kinase regulatory subunit 2 (CKS2) in various human cancers. However, CKS2 has rarely been studied in cervical cancer. Herein, taking advantage of massive genetics data from multicenter RNA-seq and microarrays, we were the first group to perform tissue microarrays for CKS2 in cervical cancer. We were also the first to evaluate the clinical significance of CKS2 with large samples (980 cervical cancer cases and 422 noncancer cases). We further excavated the mechanism of the tumor-promoting activities of CKS2 in cervical cancer through analysis of genetic mutation profiles, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) significant enrichment of genes coexpressed with CKS2. According to the results, expression data from multilevels unanimously supported the overexpression of CKS2 in cervical cancer. Patients with cervical cancer in stage II from inhouse microarrays had significantly higher expression of CKS2, and CKS2 overexpression had an adverse impact on the disease-free survival status of cervical cancer patients in GSE44001. Both mutation types of mRNA high and mRNA low appeared in cervical cancer cases from the TCGA Firehose project. Gene coexpressed with CKS2 participated in pathways including the cell cycle, estrogen signaling pathway, and DNA replication. In summary, upregulated CKS2 is closely associated with the malignant clinical development of cervical cancer and might serve as a valuable therapeutic target in cervical cancer.
Collapse
|
15
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
16
|
Jobdeedamrong A, Theerasilp M, Thumrongsiri N, Dana P, Saengkrit N, Crespy D. Responsive polyprodrug for anticancer nanocarriers. Polym Chem 2022. [DOI: 10.1039/d2py00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanocarriers responsive to glutathione (GSH), a molecule overexpressed in cancer cells, are extensively investigated for the delivery of Pt-based chemotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| |
Collapse
|