1
|
Tang H, Wang X, He L, Yuan Z, Han L. An injectable composite hydrogel containing polydopamine-coated curcumin nanoparticles and indoximod for the enhanced combinational chemo-photothermal-immunotherapy of breast tumors. Colloids Surf B Biointerfaces 2024; 244:114130. [PMID: 39121570 DOI: 10.1016/j.colsurfb.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
The complexity and compensatory evolution of tumors weaken the effectiveness of single antitumor therapies. Therefore, multimodal combination therapies hold great promise in defeating tumors. Herein, we constructed a multi-level regulatory co-delivery system based on chemotherapy, phototherapy, and immunotherapy. Briefly, curcumin (Cur) was prepared as nanoparticles and coated with polydopamine (PDA) to form PCur-NPs, which along with an immune checkpoint inhibitor (indoximod, IND) were then loaded into a thermosensitive Pluronic F127 (F127) hydrogel to form a multifunctional nanocomposite hydrogel (PCur/IND@Gel). The in situ-formed hydrogel exhibited excellent photothermal conversion efficiency and sustained drug release behavior both in vitro and in vivo. In addition, PCur-NPs showed enhanced cellular uptake and cytotoxicity under NIR laser irradiation and induced potent immunogenic cell death (ICD). After intratumoral injection of PCur/IND@Gel, significant apoptosis in 4T1 tumors was induced, dendritic cells in lymph nodes were highly activated, potent CD8+ and CD4+ antitumor immune responses were elicited and regulative T cells in tumors were significantly reduced, which notably inhibited the tumor growth and prolonged the survive time of 4T1 tumor-bearing mice. Therefore, this injectable nanocomposite hydrogel is a promising drug co-delivery platform for chemo-photothermal-immunotherapy of breast tumors.
Collapse
Affiliation(s)
- Haiyu Tang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Xingyue Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
da Silva CR, Sá LGDAV, Andrade Neto JBD, Barroso FDD, Cabral VPDF, Rodrigues DS, da Silva LJ, Lima ISP, Pérez L, Ramos da Silva A, Moreira DR, Ricardo NMPS, Nobre HV. Antimicrobial potential of a biosurfactant gel for the prevention of mixed biofilms formed by fluconazole-resistant C. albicans and methicillin-resistant S. aureus in catheters. BIOFOULING 2024; 40:165-176. [PMID: 38425095 DOI: 10.1080/08927014.2024.2324028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Iri Sandro Pampolha Lima
- Departament of Pharmacology, School of Medicine, Federal University of Ceará, Barbalha, CE, Brazil
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | | | - Denise Ramos Moreira
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Chen S, Chen E, Guan X, Li J, Qin A, Wang C, Fu X, Huang C, Li J, Tang Y, Wei M, Zhang L, Su J. Magnetically controlled nanorobots induced oriented and rapid clearance of the cytokine storm for acute lung injury therapy. Colloids Surf B Biointerfaces 2024; 234:113731. [PMID: 38184944 DOI: 10.1016/j.colsurfb.2023.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Cytokine storms characterized by excessive secretion of circulating cytokines and immune-cell hyperactivation are life-threatening systemic inflammatory syndromes. The new strategy is in great demand to inhibit the cytokine storm. Here, we designed a type of magnetically controlled nanorobots (MAGICIAN) by fusing neutrophil membranes onto Fe3O4 nanoparticles (Fe3O4NPs). In our study, the receptors of neutrophil membranes were successfully coated to the surface of Fe3O4NPs. The associated membrane functions of neutrophils were highly preserved. MAGICIAN could in vitro neutralize the inflammatory cytokines including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ). Interestingly, MAGICIAN could be navigated to the liver sites under magnetic control and accelerated the cytokine clearance by the liver. Administration of MAGICIAN could efficiently relieve the inflammation in the acute lung injury mouse model. In addition, MAGICIAN displayed good biosafety in systemic administration. The present study provides a safe and convenient approach for the clearance of cytokine storms, indicating the potential for clinical application in acute lung injury therapy.
Collapse
Affiliation(s)
- Sheng Chen
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Enen Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoling Guan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Junfang Li
- Shimen Second Road Community Health Service Center, Jing-An District, Shanghai 200041, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chen Wang
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Xihua Fu
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Chen Huang
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Jianhao Li
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Yukuan Tang
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Minyan Wei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lingmin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jianfen Su
- Pharmacy Department, Infection Medicine Research Institute of Panyu District, Cardiovascular Diseases Research Institute of Panyu District, Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
4
|
Dang LH, Do THT, Pham TKT, Ha PT, Nguyen TP, Dao TP, Tran NQ. Injectable thermogel incorporating reactive oxygen species scavenger and nitric oxide donor to accelerate the healing process of diabetic wounds. Int J Pharm 2023; 648:123576. [PMID: 37926176 DOI: 10.1016/j.ijpharm.2023.123576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The healing of diabetic wounds is challenging due to redox imbalances. Herein, the thermogelling system AR-ACP hydrogel, with encapsulated biosafe nitric oxide (NO) donor L-arginine and resveratrol as an ROS scavenger, is established for sustainable wound therapy in the diabetic state. The innovated AR-ACP hydrogel dressings shows the sol-gel transition at 34 °C, allowing the hydrogel to fully cover wounds. The combination of L-arginine and resveratrol showed a prominent effect on anti-oxidative activity. The elimination of superoxide anions from the activated immune cells/oxidative cells by resveratrol maintained the NO-proangiogenic factors generated from L-arginine. Furthermore, the AR-ACP hydrogel endowed outstanding features such as haemocompatibility, non-skin irradiation as well as antibacterial activity. In the in vivo diabetic mice model, complete epidermal regeneration comparable to undamaged skin was observed with AR-ACP hydrogel. The synergy between L-arginine and resveratrol in the ACP hydrogel facilitated neovascularisation in the early stage, resulting in the higher balance in cellularity growth and collagen deposition in the dermal layer compared to control groups. Taken together, our findings demonstrate that the use of a customised ACP-based hydrogel, with the additional L-arginine and resveratrol, resulted in significant skin regeneration in the diabetic state.
Collapse
Affiliation(s)
- Le Hang Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| | - Thi Hong Tuoi Do
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Thi Kim Tram Pham
- Biotechnology Center of Ho Chi Minh City, Hochiminh City 700000, Viet Nam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 10000, Viet Nam
| | - Thi Phuong Nguyen
- Faculty of Chemical Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City 700000, Viet Nam
| | - Tan Phat Dao
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| |
Collapse
|
5
|
Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, Guo Y, Wang R, Gan D, Shi J, Ma P, Gao F, Su H. Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair. Int J Nanomedicine 2023; 18:4485-4505. [PMID: 37576462 PMCID: PMC10416793 DOI: 10.2147/ijn.s418534] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH2, and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Cheng Yang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Junqiang Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Chao Zhang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Liaoliao Zhu
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yang Song
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yongdong Guo
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Ronglin Wang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Dongxue Gan
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Jingjie Shi
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Peixiang Ma
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Fei Gao
- Center for Peptide Functional Materials and Innovative Drugs, Institute of Translational Medicine, Shanghai University, ShangHai City, People’s Republic of China
| | - Haichuan Su
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| |
Collapse
|
6
|
Wang K, Zhu K, Zhu Z, Shao F, Qian R, Wang C, Dong H, Li Y, Gao Z, Zhao J. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. J Nanobiotechnology 2023; 21:227. [PMID: 37461079 DOI: 10.1186/s12951-023-01980-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Myocardial infarction (MI) resulting from coronary artery occlusion is the leading global cause of cardiovascular disability and mortality. Anti-inflammatory treatment plays an important role in MI treatment. Triptolide (TPL), as a Chinese medicine monomer, has a variety of biological functions, including anti-inflammatory, anti-tumor, and immunoregulation. However, it has been proved that TPL is poorly water soluble, and has clear hepatotoxicity and nephrotoxicity, which seriously limits its clinical application. Herein, we designed a long-acting hydrogel platform (TPL@PLGA@F127) for MI treatment by intramyocardial injection. First, we found that the inflammatory response and immune regulation might be the main mechanisms of TPL against MI by network pharmacology. Subsequently, we prepared the hydrogel platform (TPL@PLGA@F127) and tested its effects and toxicity on normal organs in the early stage of MI (3 days after MI-operation). The results showed that TPL@PLGA@F127 could not only promote "repair" macrophages polarization (to M2 macrophage) by day 3 after MI, but also has a long-lasting anti-inflammatory effect in the later stage of MI (28 days after MI-operation). Additionally, we proved that TPL@PLGA@F127 could attenuate the toxicity of TPL by releasing it more slowly and stably. Finally, we observed the long-term effects of TPL@PLGA@F127 on MI and found that it could improve cardiac function, depress the myocardial fibrosis and protect the cardiomyocytes. In summary, this study indicated that TPL@PLGA@F127 could not only enhance the therapeutic effects of TPL on MI, but also attenuate the hepatotoxicity and nephrotoxicity, which established a strong foundation for the clinical application of TPL for MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Zhu
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
7
|
Wang S, Wang D, Kai M, Shen WT, Sun L, Gao W, Zhang L. Design Strategies for Cellular Nanosponges as Medical Countermeasures. BME FRONTIERS 2023; 4:0018. [PMID: 37849681 PMCID: PMC10521708 DOI: 10.34133/bmef.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 10/19/2023] Open
Abstract
The interest in using therapeutic nanoparticles to bind with harmful molecules or pathogens and subsequently neutralize their bioactivity has grown tremendously. Among various nanomedicine platforms, cell membrane-coated nanoparticles, namely, "cellular nanosponges," stand out for their broad-spectrum neutralization capability challenging to achieve in traditional countermeasure technologies. Such ability is attributable to their cellular function-based rather than target structure-based working principle. Integrating cellular nanosponges with various synthetic substrates further makes their applications exceptionally versatile and adaptive. This review discusses the latest cellular nanosponge technology focusing on how the structure-function relationship in different designs has led to versatile and potent medical countermeasures. Four design strategies are discussed, including harnessing native cell membrane functions for biological neutralization, functionalizing cell membrane coatings to enhance neutralization capabilities, combining cell membranes and functional cores for multimodal neutralization, and integrating cellular nanosponges with hydrogels for localized applications. Examples in each design strategy are selected, and the discussion is to highlight their structure-function relationships in complex disease settings. The review may inspire additional design strategies for cellular nanosponges and fulfill even broader medical applications.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Mingxuan Kai
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Pashirova TN, Shaihutdinova ZM, Mironov VF, Masson P. Biomedical Nanosystems for In Vivo Detoxification: From Passive Delivery Systems to Functional Nanodevices and Nanorobots. Acta Naturae 2023; 15:4-12. [PMID: 37153510 PMCID: PMC10154777 DOI: 10.32607/actanaturae.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
The problem of low efficiency of nanotherapeutic drugs challenges the creation of new alternative biomedical nanosystems known as robotic nanodevices. In addition to encapsulating properties, nanodevices can perform different biomedical functions, such as precision surgery, in vivo detection and imaging, biosensing, targeted delivery, and, more recently, detoxification of endogenous and xenobiotic compounds. Nanodevices for detoxification are aimed at removing toxic molecules from biological tissues, using a chemical- and/or enzyme-containing nanocarrier for the toxicant to diffuse inside the nanobody. This strategy is opposite to drug delivery systems that focus on encapsulating drugs and releasing them under the influence of external factors. The review describes various kinds of nanodevices intended for detoxification that differ by the type of poisoning treatment they provide, as well as the type of materials and toxicants. The final part of the review is devoted to enzyme nanosystems, an emerging area of research that provides fast and effective neutralization of toxins in vivo.
Collapse
Affiliation(s)
- T. N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - Z. M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| | - V. F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - P. Masson
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| |
Collapse
|
9
|
Song Y, Zheng X, Hu J, Ma S, Li K, Chen J, Xu X, Lu X, Wang X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front Microbiol 2023; 14:1083007. [PMID: 36876074 PMCID: PMC9981803 DOI: 10.3389/fmicb.2023.1083007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
The rapid evolution of antibiotic resistance and the complicated bacterial infection microenvironments are serious obstacles to traditional antibiotic therapy. Developing novel antibacterial agents or strategy to prevent the occurrence of antibiotic resistance and enhance antibacterial efficiency is of the utmost importance. Cell membrane-coated nanoparticles (CM-NPs) combine the characteristics of the naturally occurring membranes with those of the synthetic core materials. CM-NPs have shown considerable promise in neutralizing toxins, evading clearance by the immune system, targeting specific bacteria, delivering antibiotics, achieving responsive antibiotic released to the microenvironments, and eradicating biofilms. Additionally, CM-NPs can be utilized in conjunction with photodynamic, sonodynamic, and photothermal therapies. In this review, the process for preparing CM-NPs is briefly described. We focus on the functions and the recent advances in applications of several types of CM-NPs in bacterial infection, including CM-NPs derived from red blood cells, white blood cells, platelet, bacteria. CM-NPs derived from other cells, such as dendritic cells, genetically engineered cells, gastric epithelial cells and plant-derived extracellular vesicles are introduced as well. Finally, we place a novel perspective on CM-NPs' applications in bacterial infection, and list the challenges encountered in this field from the preparation and application standpoint. We believe that advances in this technology will reduce threats posed by bacteria resistance and save lives from infectious diseases in the future.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xia Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subo Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyao Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyang Lu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
11
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
12
|
Novel antibacterial hydrogels based on gelatin/polyvinyl-alcohol and graphene oxide/silver nanoconjugates: formulation, characterization, and preliminary biocompatibility evaluation. Heliyon 2022; 8:e09145. [PMID: 35846480 PMCID: PMC9280498 DOI: 10.1016/j.heliyon.2022.e09145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
|
13
|
Deng J, Peng C, Hou L, Wu Y, Liu W, Fang G, Jiang H, Qin S, Yang F, Huang G, Gou Y. Dithiocarbazate-copper complex loaded thermosensitive hydrogel for lung cancer therapy via tumor in situ sustained-release. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Pluronic F127 thermosensitive hydrogels containing copper complex 3 were constructed, which could delay A549 tumor xenograft growth effectively with lower systemic toxicity.
Collapse
Affiliation(s)
- JunGang Deng
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Chang Peng
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
- State Key Laboratory of Drug Research and, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - LiXia Hou
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - YouRu Wu
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Wei Liu
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - GuiHua Fang
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - HaoWen Jiang
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - ShanFu Qin
- Hechi University, Hechi 546300, Guangxi, China
| | - Feng Yang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - GuoJin Huang
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yi Gou
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| |
Collapse
|