1
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Mamatha M, Ansari MA, Begum MY, Prasad B. D, Al Fatease A, Hani U, Alomary MN, Sultana S, Punekar SM, M.B. N, Lakshmeesha TR, Ravikiran T. Green Synthesis of Cerium Oxide Nanoparticles, Characterization, and Their Neuroprotective Effect on Hydrogen Peroxide-Induced Oxidative Injury in Human Neuroblastoma (SH-SY5Y) Cell Line. ACS OMEGA 2024; 9:2639-2649. [PMID: 38250384 PMCID: PMC10795031 DOI: 10.1021/acsomega.3c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Cerium oxide nanoparticles (CeO2NPs) have a broad scale of applications in the biomedical field due to their excellent physicochemical and catalytic properties. The present study aims to synthesize the CeO2NPs from Centella asiatica (C. asiatica) leaf extract, which has been used in Indian traditional medicine for its neuroprotective properties. The CeO2NPs were characterized by ultraviolet-visible, X-ray diffraction, Fourier transform infrared, Raman spectroscopy, scanning electron microscopy- energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. The antioxidant property was evaluated by 2,2-di (4-tert-octyl phenyl)-1-picrylhydrazyl and OH radical assays. The neuroprotective potential was assessed against the oxidative stress (OS) induced by H2O2 in the human neuroblastoma (SH-SY5Y) cell line. CeO2NPs exhibited significant DPPH and OH radical scavenging activity. Our results revealed that CeO2NPs significantly increased H2O2-induced cell viability, decreased lactate dehydrogenase, protein carbonyls, reactive oxygen species generation, apoptosis, and upregulated antioxidant enzyme activity. Our findings suggest that the CeO2NPs protect the SH-SY5Y cells from OS and apoptosis, which could potentially counter OS-related neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Mohammad Azam Ansari
- Department
of Epidemic Disease Research, Institutes for Research and Medical
Consultations (IRMC), Imam, Abdulrahman
Bin Faisal University, Dammam 31441, Saudi Arabia
| | - M Yasmin Begum
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Abha 61421, Saudi Arabia
| | - Daruka Prasad B.
- Department
of Physics, B.M.S. Institute of Technology, Bengaluru 560064, Karnataka, India
| | - Adel Al Fatease
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Abha 61421, Saudi Arabia
| | - Umme Hani
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad N. Alomary
- Advanced
Diagnostic and Therapeutic Institute, King
Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sumreen Sultana
- Department
of Microbiology and Biotechnology, Bangalore
University, Bengaluru 560056, Karnataka, India
| | - Shital Manohar Punekar
- Department
of Microbiology and Biotechnology, Bangalore
University, Bengaluru 560056, Karnataka, India
| | - Nivedika M.B.
- Department
of Microbiology and Biotechnology, Bangalore
University, Bengaluru 560056, Karnataka, India
| | | | - Tekupalli Ravikiran
- Department
of Microbiology and Biotechnology, Bangalore
University, Bengaluru 560056, Karnataka, India
| |
Collapse
|
3
|
Aatif M. Current Understanding of Polyphenols to Enhance Bioavailability for Better Therapies. Biomedicines 2023; 11:2078. [PMID: 37509717 PMCID: PMC10377558 DOI: 10.3390/biomedicines11072078] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, plant polyphenols have become a popular focus for the development of novel functional foods. Polyphenols, a class of bioactive compounds, including flavonoids, phenolic acids, and lignans, are commonly found in plant-based diets with a variety of biological actions, including antioxidant, anti-inflammatory, and anticancer effects. Unfortunately, polyphenols are not widely used in nutraceuticals since many of the chemicals in polyphenols possess poor oral bioavailability. Thankfully, polyphenols can be encapsulated and transported using bio-based nanocarriers, thereby increasing their bioavailability. Polyphenols' limited water solubility and low bioavailability are limiting factors for their practical usage, but this issue can be resolved if suitable delivery vehicles are developed for encapsulating and delivering polyphenolic compounds. This paper provides an overview of the study of nanocarriers for the enhancement of polyphenol oral bioavailability, as well as a summary of the health advantages of polyphenols in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Ahmad W, Ansari MA, Alsayari A, Almaghaslah D, Wahab S, Alomary MN, Jamal QMS, Khan FA, Ali A, Alam P, Elderdery AY. In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma. Pharmaceuticals (Basel) 2022; 15:1348. [PMID: 36355520 PMCID: PMC9697597 DOI: 10.3390/ph15111348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 08/11/2023] Open
Abstract
Anthraquinones (AQs) are present in foods, dietary supplements, pharmaceuticals, and traditional treatments and have a wide spectrum of pharmacological activities. In the search for anti-cancer drugs, AQ derivatives are an important class. In this study, anthraquinone aglycons chrysophanol (Chr), emodin (EM) and FDA-approved anticancer drug fluorouracil were analyzed by molecular docking studies against receptor molecules caspase-3, apoptosis regulator Bcl-2, TRAF2 and NCK-interacting protein kinase (TNIK) and cyclin-dependent protein kinase 2 (CDK2) as novel candidates for future anticancer therapeutic development. The ADMET SAR database was used to predict the toxicity profile and pharmacokinetics of the Chr and EM. Furthermore, in silico results were validated by the in vitro anticancer activity against HCT-116 and HeLa cell lines to determine the anticancer effect. According to the docking studies simulated by the docking program AutoDock Vina 4.0, Chr and EM had good binding energies against the target proteins. It has been observed that Chr and EM show stronger molecular interaction than that of the FDA-approved anticancer drug fluorouracil. In the in vitro results, Chr and EM demonstrated promising anticancer activity in HCT-116 and HeLa cells. These findings lay the groundwork for the potential use of Chr and EM in the treatment of human colorectal and cervical carcinomas.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- Complementary and Alternative Medicine Unit, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- Complementary and Alternative Medicine Unit, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11941, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
5
|
Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life (Basel) 2022; 12:life12101639. [PMID: 36295074 PMCID: PMC9604961 DOI: 10.3390/life12101639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.
Collapse
|
6
|
Fan Q, Wu H, Kong Q. Superhydrophilic PLGA-Graft-PVP/PC Nanofiber Membranes for the Prevention of Epidural Adhesion. Int J Nanomedicine 2022; 17:1423-1435. [PMID: 35369033 PMCID: PMC8964670 DOI: 10.2147/ijn.s356250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background The frequent occurrence of failed back surgery syndrome (FBSS) seriously affects the quality of life of postoperative lumbar patients. Epidural adhesion is the major factor in FBSS. Purpose A safe and effective antiadhesion material is urgently needed. Methods A superhydrophilic PLGA-g-PVP/PC nanofiber membrane (NFm) was prepared by electrospinning. FTIR was performed to identify its successful synthesis. Scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and water contact angle measurement were performed. CCK-8 assays were performed in primary rabbit fibroblasts (PRFs) and RAW264.7 cells to explore the cytotoxicity of PLGA-g-PVP/PC NFm. Calcein-AM/PI staining was used to measure the adhesion status in PRFs. ELISA was performed to measure the concentrations of TNF-α and IL-10 in RAW264.7 cells. In addition, the anti-epidural adhesion efficacy of the PLGA-g-PVP/PC NFm was determined in a rabbit model of lumbar laminectomy. Results The PLGA-g-PVP/PC NFm exhibited ultrastrong hydrophilicity and an appropriate degradation rate. Based on the results of the CCK-8 assays, PLGA-g-PVP/PC NFm had no cytotoxicity to PRFs and RAW264.7 cells. Calcein-AM/PI staining showed that PLGA-g-PVP/PC NFm could inhibit PRF adhesion. ELISAs showed that PLGA-g-PVP/PC NFm could attenuate lipopolysaccharide-induced macrophage activation. In vivo experiments further confirmed the favorable anti-epidural adhesion effect of PLGA-g-PVP/PC NFm and the lack of a strong inflammatory response. Conclusion In this study, PLGA-g-PVP/PC NFm was developed successfully to provide a safe and effective physical barrier for preventing epidural adhesion. PLGA-g-PVP/PC NFm provides a promising strategy for preventing postoperative adhesion and has potential for clinical translation.
Collapse
Affiliation(s)
- Qingxin Fan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Hao Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Qingquan Kong, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China, Email
| |
Collapse
|