1
|
He L, He T, Yang Y, Chen XB. Material selection, preparation, driving and applications of light-driven micro/nano motors: a review. NANOSCALE 2025. [PMID: 40261240 DOI: 10.1039/d4nr05202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
As an external energy stimulus, light possesses the advantageous qualities of being reversible, wireless and remotely maneuverable while driving the motion of micro and nano motors. Despite the extensive publication of articles on light-driven micro- and nano-motors (LDMNMs) over the past two decades, reviews that address LDMNMs in general, from material selection, design, preparation, driving to applications, remain scarce. Therefore, it is necessary to highlight the superiority of light as a stimulating energy source for driving MNMs, as well as to promote the continuous development of LDMNMs and give newcomers a more basic and comprehensive knowledge in this field. This present review focuses on advanced preparation methods for LDNMNs, and provides a comprehensive comparison of the advantages and limitations of various techniques. In addition, general design strategies for building asymmetric fields around LDMNMs are introduced, as well as a variety of photoactive materials, including photocatalytic, photothermal, and photoinduced isomerization materials. The existing propulsive mechanisms and kinematic behaviours of LDMNMs are described in detail, including photocatalytic oxidation, photothermal effects and photoinduced isomerization. The principles of the various drive mechanisms are also analysed in detail and their merits and shortcomings summarized. Finally, following a comprehensive review of the potential applications in biomedicine, environmental remediation and other fields, further perspectives on future developments are presented with a view to overcoming key challenges.
Collapse
Affiliation(s)
- Lingcong He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
2
|
Stoia D, Fazio E, Corsaro C, Campu A, Soritau O, Craciun AM, Chereches G, Focsan M, Neri G, Piperno A. A graphene-poly(methacrylic acid)-gold bipyramid hybrid plasmonic nanocomposite for in vitro bioimaging and photothermal therapy. J Mater Chem B 2025; 13:4433-4446. [PMID: 40099578 DOI: 10.1039/d5tb00097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
This study presents two new hybrid nanosystems (G-PMA(1 : 1)@AuBPs and G-PMA(1 : 3)@AuBPs), constructed from amine graphene (G-NH2) functionalized with poly(methacrylic acid) (PMA) and gold nanoparticles with a bipyramidal shape (AuBPs). These nanoplatforms behave like efficient photothermal agents, making them suitable for effective in vitro photothermal therapy and for bioimaging applications simultaneously. The nanosystems were synthesized by combining covalent and supramolecular approaches and characterized by several techniques including XPS, Raman spectroscopy, UV-vis spectroscopy, XRD, and STEM. It was observed that G-PMA@AuBP systems demonstrate remarkable light-to-heat conversion efficiency under near-infrared irradiation at 785 and 808 nm. Both systems showed an enhancement of the photothermal properties compared to the individual materials. Particularly, a photothermal conversion efficiency exceeding 70% was estimated for the G-PMA(1 : 3)@AuBP sample under 808 nm irradiation. Beyond their photothermal capabilities, G-PMA@AuBP systems can be effective as label-free bioimaging probes. G-PMA(1 : 1)@AuBP has been successfully visualized within B16F10 melanoma cells using FLIM, conventional fluorescence, and dark-field microscopy techniques, with localization observed in the perinuclear region. Cytotoxicity assays confirmed the biocompatibility of both nanosystems. Finally, the in vitro phototherapeutic efficacy was validated under 808 nm laser irradiation, showing promising results for melanoma cell treatment through photothermal therapy.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physics Science and Earth Science, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy
| | - Carmelo Corsaro
- Department of Mathematical and Computer Sciences, Physics Science and Earth Science, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
- Environmental Science, Physics, Physical Education and Sport Department, Faculty of Sciences, Lucian Blaga University, 5-7 Doctor Ion Raţiu Street, 550012 Sibiu, Romania
| | - Olga Soritau
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Cluj, Romania
| | - Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
| | - Gabriela Chereches
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy.
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy.
| |
Collapse
|
3
|
Saghiri MA, Saini RS, Heboyan A. Cytotoxicity of Nanocarrier-Based Drug Delivery in Oral Cancer Therapy: A Systematic Review and Meta-Analysis. Cancer Control 2025; 32:10732748241310936. [PMID: 39829067 PMCID: PMC11744631 DOI: 10.1177/10732748241310936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Oral cancer remains 1 of the biggest health care challenges; it has a poor response to treatment, and treatment often results in severe side effects. Nano-targeted drug carrier-assisted drug delivery systems can improve the benefits of targeted drug delivery and treatment efficacy. A systematic review and meta-analysis was conducted to investigate the effect of targeted nano carrier drug delivery systems on the management of oral cancer. METHODS A comprehensive literature search was performed using PubMed, ScienceDirect, the Cochrane Library, Google Scholar, and Scopus using PRISMA guidelines, to identify relevant in vitro and in vivo (human) studies. Studies evaluating the impact of nanocarrier-based delivery systems on oral cancer cells or human models were selected. Pooled effect sizes were calculated using random-effects models via RevMan 5.4, and heterogeneity among studies was assessed. RESULTS After full-text assessment, 15 research articles were included [14 in vitro studies and 1 randomized controlled trial (RCT)]. In the meta-analysis, the pooled data (IC50) for the impact of the nanocarrier delivery system vs control on oral cancer was -7.67 (95% CI: -41.77, 26.43), with a high heterogeneity (I2 = 92%, P < 0.00001). Moreover, in vitro studies had a medium risk of bias, while the RCT had some concerns in the randomization domain. CONCLUSION Nanocarrier-based drug delivery has been found to be a superior approach compared to drug delivery in free form, increasing the efficacy and safety of oral cancer treatment.
Collapse
Affiliation(s)
- Mohammad A. Saghiri
- Department of Restorative Dentistry, Director of Biomaterial and Prosthodontic Laboratory, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Ravinder S. Saini
- Department A. Dental Health Sciences COAMS, King Khalid University, Abha, Saudi Arabia
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| |
Collapse
|
4
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
5
|
Slapak EJ, Zwijnenburg DA, Koster J, Bijlsma MF, Spek CA. Identification of pancreatic cancer-specific protease substrates for protease-dependent targeted delivery. Oncogenesis 2024; 13:40. [PMID: 39567504 PMCID: PMC11579016 DOI: 10.1038/s41389-024-00542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges due to the inadequacy of existing chemotherapeutics, which often result in toxicity-dependent dose limitations and premature cessation of therapy. Targeted delivery of therapeutic molecules offers a promising solution. Given that PDAC is marked by a desmoplastic reaction with extensive aberrant protease activity, protease-dependent targeted delivery could minimize off-target toxicities and is of increasing interest. The efficacy of targeted delivery hinges on the specificity of the substrates used; insufficient specificity can lead to off-target effects, reducing the advantage over non-targeted methods. Here, we employ an unbiased library approach to screen over 7 million peptide substrates for proteolytic cleavage by PDAC cell lysates, identifying 37 substrates enriched by at least 500-fold after three rounds of selection. As systemically administered targeted delivery depends on the absence of substrate cleavage in circulation, the peptide library was also screened against whole blood lysates, and enriched substrates were removed from the PDAC-enriched dataset to obtain PDAC-specific substrates. In vitro validation using FRET-peptides showed that 13 of the selected 15 substrates are cleaved by a panel of PDAC cell line lysates. Moreover, evaluation against healthy murine organ and human blood lysates to assess off-target cleavage revealed that the identified substrates are indeed PDAC-specific and that several substrates may be superior with respect to PDAC specificity over the CAPN2-responsive substrate, which has recently shown preclinical potential in targeted therapy, but future animal models should address the potential superiority. Overall, we thus identified substrates with high selectivity and sensitivity for PDAC that could be employed in protease-dependent targeted therapies.
Collapse
Affiliation(s)
- Etienne J Slapak
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancesr Biology, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancesr Biology, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - C Arnold Spek
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancesr Biology, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Li R, Li Y, Song Z, Gu Y, Jiao X, Wan C, Liu T, Zhang R, Gao R, Wang X. A Graphene-Based Lipid Modulation Nanoplatform for Synergetic Lipid Starvation/Chemo/Photothermal Therapy of Oral Squamous Cell Carcinoma. Int J Nanomedicine 2024; 19:11235-11255. [PMID: 39524917 PMCID: PMC11545731 DOI: 10.2147/ijn.s478308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Chemotherapy is one of the most commonly used treatments for oral squamous cell carcinoma (OSCC), but its use is limited by drug resistance and severe systemic toxicity. To eliminate these side effects and improve anti-tumor efficacy, several therapeutic approaches have been developed for use with chemotherapy. In this study, we developed a graphene-based lipid modulation nanoplatform (NSD) that carries SB-204990, a small molecule inhibitor specific for ATP citrate lyase (ACLY), and doxorubicin (DOX), a chemotherapeutic agent, and the trio enables synergistic treatment of OSCC with lipid starvation, chemotherapy, and photothermal therapy. Methods We first determined whether ACLY expression was upregulated in OSCC, and then assessed the growth inhibitory effects of SB-204990 on SCC-15 cells and changes in lipid (acetyl coenzyme A, free fatty acids, and cholesterol) levels. We characterized NSD and then evaluated the stability, photothermal properties, drug loading, and release ability of NSD. Finally, the therapeutic effects of NSD on OSCC were investigated by in vitro and in vivo experiments, and the changes in lipid levels in OSCC tissues after ACLY inhibition were further evaluated. Results The results showed that ACLY was highly expressed in OSCC, and ACLY inhibition produced reproductive suppression and decreased lipid levels in SCC-15 cells. The NSD nanoplatform possessed good stability, photothermal properties, high drug loading capacity and controlled release. In addition, the triple therapy achieved satisfactory anticancer effects in both in vivo and in vitro assays, and the inhibition rate of tumors was as high as 99.4% in the NSD+Laser treatment group. Conclusion The changes in tumor cell lipid levels and cell proliferation arrest induced by ACLY inhibition suggest that ACLY may be a promising target for lipid starvation therapy and resistance to chemoresistance, and its inhibitors are expected to become new anticancer drugs. The NSD nanocarrier system enables synergistic treatment with lipid starvation, chemotherapy, and photothermal therapy, which represents an innovative approach to combating tumors.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Zijian Song
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Yixuan Gu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Rongrong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
7
|
Li Y, Chen J, Xia Q, Shang J, He Y, Li Z, Chen Y, Gao F, Yu X, Yuan Z, Yin P. Photothermal Fe 3O 4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy. J Nanobiotechnology 2024; 22:630. [PMID: 39415226 PMCID: PMC11484360 DOI: 10.1186/s12951-024-02909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
Photothermal therapy (PTT) is a promising non-invasive treatment that has shown great potential in eliminating tumors. It not only induces apoptosis of cancer cells but also triggers immunogenic cell death (ICD) which could activate the immune system against cancer. However, the immunosuppressive tumor microenvironment (TIME) poses a challenge to triggering strong immune responses with a single treatment, thus limiting the therapeutic effect of cancer immunotherapy. In this study, dual-targeted nano delivery system (GOx@FeNPs) combined with αPD-L1 immune checkpoint blocker could inhibit colorectal cancer (CRC) progression by mediating PTT, ferroptosis and anti-tumor immune response. Briefly, specific tumor delivery was achieved by the cyclic arginine glycyl aspartate (cRGD) peptide and anisamide (AA) in GOx@FeNPs which not only had a good photothermal effect to realize PTT and induce ICD, but also could deplete glutathione (GSH) and catalyze the production of reactive oxygen species (ROS) from endogenous H2O2. All these accelerated the Fenton reaction and augmented the process of PTT-induced ICD. Thus, a large amount of tumor specific antigen was released to stimulate the maturation of dendritic cells (DCs) in lymph nodes and enhance the infiltration of CD8+ T cells in tumor. At the same time, the combination with αPD-L1 has favorable synergistic effectiveness against CRC with tumor inhibition rate over 90%. Furthermore, GOx@FeNPs had good magnetic resonance imaging (MRI) capability under T2-weighting owing to the presence of Fe3+, which is favorable for integrated diagnosis and treatment systems of CRC. By constructing a dual-targeted GOx@FeNPs nanoplatform, PTT synergistically combined with ferroptosis was realized to improve the immunotherapeutic effect, providing a new approach for CRC immunotherapy.
Collapse
Affiliation(s)
- Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yingying Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
8
|
Li C, Fang Y, Xu S, Zhao J, Dong D, Li S. Nanomedicine in HNSCC therapy-a challenge to conventional therapy. Front Pharmacol 2024; 15:1434994. [PMID: 39469621 PMCID: PMC11513379 DOI: 10.3389/fphar.2024.1434994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a difficult-to-treat cancer and treatment is challenging due to recurrence or metastasis. Therefore, there is an urgent need to explore more effective targeted therapies to improve the clinical outcomes and survival of HNSCC patients. The nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer therapy. In this review, we summarize some important signaling pathways and present the current and potential roles of various nanomaterial drug-delivery formulations in HNSCC treatment, aiming to understand the pathogenesis of HNSCC and further improve the therapeutic efficacy of nanomaterial HNSCC. This article seeks to highlight the exciting potential of novel nanomaterials for targeted cancer therapy in HNSCC and thus provide motivation for further research in this field.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuan Fang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sanchun Xu
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Clinical Laboratory Center, Central Hospital of Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
He J, Lin C, Hu Y, Gu S, Deng H, Shen Z. Research progress of graphene-based nanomaterials in the diagnosis and treatment of head and neck cancer. Sci Prog 2024; 107:368504241291342. [PMID: 39574301 PMCID: PMC11585035 DOI: 10.1177/00368504241291342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer in the world, and its incidence is increasing year by year. Due to the late-stage diagnosis and poor prognosis of HNC, as well as the limitations of traditional treatment methods, it is urgent to improve early detection rates and explore alternative treatment approaches. Graphene-based nanomaterials (GBNs) have been widely applied in biomedical fields due to their high surface area, excellent photothermal properties, and high loading capacity. This literature review introduces the functionalization and biocompatibility of GBNs, followed by a focus on their applications in the diagnosis and treatment of HNC. This includes their potential as bioimaging or biosensing platforms for diagnosis and monitoring, as well as their research progress in chemotherapy drug delivery, phototherapy, and gene transfection. The tremendous potential of GBNs as a platform for combination therapies is emphasized. Finally, in this literature review, we briefly discuss the toxicity and limitations of GBNs in the current research and provide an outlook on their future clinical applications in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Jiali He
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanghao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
11
|
Kattimani V, Bhukya NKN, Panga GSK, Chakrabarty A, Lingamaneni P. Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review. J Maxillofac Oral Surg 2024; 23:763-771. [PMID: 39118900 PMCID: PMC11303611 DOI: 10.1007/s12663-024-02251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Nanotechnology has shown potential in treating different types of cancers. In particular, nano-drug delivery systems (DDSs) offer a promising strategy for treating oral cancer. By customizing therapy and improving drug delivery, these systems can improve outcomes for patients. Hence, a review was conducted to assess the current evidence and explore the use of DDSs for treating oral cancer. Aim To comprehensively explore the nano-drug carriers and target delivery for oral cancer therapy and to discuss the benefits, challenges, and potential to guide future research and clinical practice. Methodology A systematic search of articles archived in PubMed, Scopus, and Cochrane using keywords such as Nano, drug carrier, target drug delivery, and oral cancer was performed to fulfill the objectives from inception till February 2, 2024. Articles providing insights into nano-drug carriers in oral cancer were included. Results The results revealed a total of 156 articles. After duplicate removal, 136 articles were screened for title and abstract as per the inclusion and exclusion criteria. A total of 113 articles were excluded with reasons. Out of the remaining 23 articles, only 11 were included for qualitative data synthesis. Conclusion The literature revealed scarcity of oral cancer-related work using DDSs. Qualitative synthesis of data revealed that nano-drug carriers demonstrated a promising avenue for targeted therapeutic approaches in oral cancer, despite the challenges and their potential benefits. Continued research and development in this field are crucial to overcoming these challenges and fully realizing the potential of nano-drug carriers in revolutionizing oral cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-024-02251-z.
Collapse
Affiliation(s)
- Vivekanand Kattimani
- SIBAR Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh 522509 India
| | - Nom Kumar Naik Bhukya
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | | | | |
Collapse
|
12
|
Hu K, Zhang D, Ma W, Gu Y, Zhao J, Mu X. Polydopamine-Based Nanoparticles for Synergistic Chemotherapy of Prostate Cancer. Int J Nanomedicine 2024; 19:6717-6730. [PMID: 38979530 PMCID: PMC11230127 DOI: 10.2147/ijn.s468946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Immune regulatory small molecule JQ1 can block its downstream effector PD-L1 pathway and effectively reverse the PD-L1 upregulation induced by doxorubicin (DOX). So the synergistic administration of chemotherapeutic drug DOX and JQ1 is expected to increase the sensitivity of tumors to immune checkpoint therapy and jointly enhance the body's own immunity, thus effectively killing tumor cells. Therefore, a drug delivery system loaded with DOX and JQ1 was devised in this study. Methods Polydopamine nanoparticles (PDA NPs) were synthesized through spontaneous polymerization. Under appropriate pH conditions, DOX and JQ1 were loaded onto the surface of PDA NPs, and the release of DOX and JQ1 were measured using UV-Vis or high performance liquid chromatography (HPLC). The mechanism of fabricated nanocomplex in vitro was investigated by cell uptake experiment, cell viability assays, apoptosis assays, and Western blot analysis. Finally, the tumor-bearing mouse model was used to evaluate the tumor-inhibiting efficacy and the biosafety in vivo. Results JQ1 and DOX were successfully loaded onto PDA NPs. PDA-DOX/JQ1 NPs inhibited the growth of prostate cancer cells, reduced the expression of apoptosis related proteins and induced apoptosis in vitro. The in vivo biodistribution indicated that PDA-DOX/JQ1 NPs could accumulated at the tumor sites through the EPR effect. In tumor-bearing mice, JQ1 delivered with PDA-DOX/JQ1 NPs reduced PD-L1 expression at tumor sites, generating significant tumor suppression. Furthermore, PDA-DOX/JQ1 NPs could reduce the side effects, and produce good synergistic treatment effect in vivo. Conclusion We have successfully prepared a multifunctional platform for synergistic prostate cancer therapy.
Collapse
Affiliation(s)
- Kebang Hu
- Department of Urology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, People’s Republic of China
| | - Weiran Ma
- College of Pharmacy, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanzhi Gu
- College of Pharmacy, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, 710002, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
13
|
Zhao X, Leng D, Wang H, Jin H, Wu Y, Qin Z, Wu D, Wei X. An Acid-Responsive Iron-Based Nanocomposite for OSCC Treatment. J Dent Res 2024; 103:612-621. [PMID: 38684484 DOI: 10.1177/00220345241238154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, characterized by invasiveness, local lymph node metastasis, and poor prognosis. Traditional treatment and medications have limitations, making the specific inhibition of OSCC growth, invasion, and metastasis a challenge. The tumor microenvironment exhibits mildly acidity and high concentrations of H2O2, and its exploitation for cancer treatment has been widely researched across various cancers, but research in the oral cancer field is relatively limited. In this study, by loading ultra-small Prussian blue nanoparticles (USPBNPs) into mesoporous calcium-silicate nanoparticles (MCSNs), we developed an acid-responsive iron-based nanocomposite, USPBNPs@MCSNs (UPM), for the OSCC treatment. UPM demonstrated excellent dual enzyme activities, generating toxic ·OH in a mildly acidic environment, effectively killing OSCC cells and producing O2 in a neutral environment to alleviate tissue hypoxia. The results showed that UPM could effectively inhibit the proliferation, migration, and invasion of OSCC cells, as well as the growth of mice solid tumors, without obvious systemic toxicity. The mechanisms may involve UPM inducing ferroptosis of OSCC cells by downregulating the xCT/GPX4/glutathione (GSH) axis, characterized by intracellular iron accumulation, reactive oxygen species accumulation, GSH depletion, lipid peroxidation, and abnormal changes in mitochondrial morphology. Therefore, this study provides empirical support for ferroptosis as an emerging therapeutic target for OSCC and offers a valuable insight for future OSCC treatment.
Collapse
Affiliation(s)
- X Zhao
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - D Leng
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - H Wang
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - H Jin
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Y Wu
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Z Qin
- Nanjing Medical University, The First Clinical Medical College, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - D Wu
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - X Wei
- Jiangsu Province Key Laboratory of Oral Diseases & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zhang Y, Wu Y, Du H, Li Z, Bai X, Wu Y, Li H, Zhou M, Cao Y, Chen X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2023; 16:7. [PMID: 38276483 PMCID: PMC10820767 DOI: 10.3390/pharmaceutics16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oral cancer (OC), characterized by malignant tumors in the mouth, is one of the most prevalent malignancies worldwide. Chemotherapy is a commonly used treatment for OC; however, it often leads to severe side effects on human bodies. In recent years, nanotechnology has emerged as a promising solution for managing OC using nanomaterials and nanoparticles (NPs). Nano-drug delivery systems (nano-DDSs) that employ various NPs as nanocarriers have been extensively developed to enhance current OC therapies by achieving controlled drug release and targeted drug delivery. Through searching and analyzing relevant research literature, it was found that certain nano-DDSs can improve the therapeutic effect of drugs by enhancing drug accumulation in tumor tissues. Furthermore, they can achieve targeted delivery and controlled release of drugs through adjustments in particle size, surface functionalization, and drug encapsulation technology of nano-DDSs. The application of nano-DDSs provides a new tool and strategy for OC therapy, offering personalized treatment options for OC patients by enhancing drug delivery, reducing toxic side effects, and improving therapeutic outcomes. However, the use of nano-DDSs in OC therapy still faces challenges such as toxicity, precise targeting, biodegradability, and satisfying drug-release kinetics. Overall, this review evaluates the potential and limitations of different nano-DDSs in OC therapy, focusing on their components, mechanisms of action, and laboratory therapeutic effects, aiming to provide insights into understanding, designing, and developing more effective and safer nano-DDSs. Future studies should focus on addressing these issues to further advance the application and development of nano-DDSs in OC therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Xiaofeng Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yange Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Huimin Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yifeng Cao
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| |
Collapse
|
15
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
16
|
Manikkath J, Manikkath A, Lad H, Vora LK, Mudgal J, Shenoy RR, Ashili S, Radhakrishnan R. Nanoparticle-mediated active and passive drug targeting in oral squamous cell carcinoma: current trends and advances. Nanomedicine (Lond) 2023; 18:2061-2080. [PMID: 38197397 DOI: 10.2217/nnm-2023-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an invasive and highly malignant cancer with significant morbidity and mortality. Existing treatments including surgery, chemotherapy and radiation have poor overall survival rates and prognosis. The intended therapeutic effects of chemotherapy are limited by drug resistance, systemic toxicity and adverse effects. This review explores advances in OSCC treatment, with a focus on lipid-based platforms (solid lipid nanoparticles, nanostructured lipid carriers, lipid-polymer hybrids, cubosomes), polymeric nanoparticles, self-assembling nucleoside nanoparticles, dendrimers, magnetic nanovectors, graphene oxide nanostructures, stimuli-responsive nanoparticles, gene therapy, folic acid receptor targeting, gastrin-releasing peptide receptor targeting, fibroblast activation protein targeting, urokinase-type plasminogen activator receptor targeting, biotin receptor targeting and transferrin receptor targeting. This review also highlights oncolytic viruses as OSCC therapy candidates.
Collapse
Affiliation(s)
- Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka State, 576104, India
| | - Aparna Manikkath
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Hitesh Lad
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka State, 576104, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | | | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
- Academic Unit of Oral & Maxillofacial Medicine & Pathology, School of Clinical Dentistry, University of Sheffield, S10 2TA, UK
| |
Collapse
|
17
|
AbouAitah K, Sabbagh F, Kim BS. Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2666. [PMID: 37836307 PMCID: PMC10574074 DOI: 10.3390/nano13192666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many illnesses, nanosized graphene oxide (NGO) is now garnering a large amount of attention among these materials. In addition to other benefits, NGO functions as a drug nanocarrier with remarkable biocompatibility, high pharmaceutical loading capacity, controlled drug release capability, biological imaging efficiency, multifunctional nanoplatform properties, and the power to increase the therapeutic efficacy of loaded agents. Thus, NGO is a perfect nanoplatform for the development of drug delivery systems (DDSs) to both detect and treat a variety of ailments. This review article's main focus is on investigating surface functionality, drug-loading methods, and drug release patterns designed particularly for smart delivery systems. The paper also examines the relevance of using NGOs to build DDSs and considers prospective uses in the treatment of diseases including cancer, infection by bacteria, and bone regeneration medicine. These factors cover the use of naturally occurring medicinal substances produced from plant-based sources.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| |
Collapse
|