1
|
Gao J, Wang H, Qiu X, Tang J. E2F3/CDCA2 reduces radiosensitivity in gastric adenocarcinoma by activating PI3K/AKT pathway. Br J Radiol 2023; 96:20230477. [PMID: 37750838 PMCID: PMC10646641 DOI: 10.1259/bjr.20230477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES Gastric adenocarcinoma is primarily responsible for tumor-associated deaths and its incidence is increasing global. CDCA2 is a nuclear protein binding to protein phosphatase one γ (PP1γ) and plays a pro-oncogenic role in tumors. This study aimed to elucidate the biological function of CDCA2 in gastric adenocarcinoma progression and radiosensitivity, as well as its potential mechanisms. METHODS Differentially expressed mRNAs in gastric adenocarcinoma were obtained by bioinformatics and upstream regulatory factors were predicted. The correlation between their expressions was analyzed. The expressions of E2F3 and CDCA2 in cells were assayed by qRT-PCR and their regulatory relationship was validated by molecular experiments. Cell viability was tested via CCK-8. Cell proliferation and survival after radiotherapy were determined by colony formation assay. The expressions of PI3K/AKT pathway-related proteins were assessed through western blot. RESULTS CDCA2 was significantly upregulated in gastric adenocarcinoma tissues and cells, promoted cell proliferation, and reduced radiosensitivity. The impact of CDCA2 on cell proliferation and radiosensitivity was reversed by the PI3K/AKT inhibitor. Furthermore, the upstream transcription factor of CDCA2 was found to be E2F3, which was highly expressed in gastric adenocarcinoma. The binding relationship between the two was validated by dual luciferase and ChIP experiments. The rescue experiment showed that E2F3 activated CDCA2 to drive cell proliferation and reduce radiosensitivity through PI3K/AKT pathway in gastric adenocarcinoma. CONCLUSION In summary, this study found that E2F3 activated CDCA2 to drive cell proliferation and reduce radiosensitivity in gastric adenocarcinoma through the PI3K/AKT pathway, suggesting that E2F3/CDCA2 axis is a new therapeutic target for gastric adenocarcinoma. ADVANCES IN KNOWLEDGE 1. CDCA2 reduced the radiosensitivity of gastric adenocarcinoma cells;2. CDCA2 reduced the radiosensitivity of gastric adenocarcinoma cells through the PI3K/AKT pathway;3. E2F3 activated CDCA2 to reduce the radiosensitivity of gastric adenocarcinoma cells through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jun Gao
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Huaqiao Wang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiujuan Qiu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jianjun Tang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
2
|
Wang X, Meng F, Li X, Xue L, Chen A, Qiu Y, Zhang Z, Li L, Liu F, Li Y, Sun Z, Chu Y, Xu R, Yu L, Shao J, Tian M, Qian X, Liu Q, Liu B, Li R. Nanomodified Switch Induced Precise and Moderate Activation of CAR-T Cells for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205044. [PMID: 36755195 PMCID: PMC10131841 DOI: 10.1002/advs.202205044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a transformative treatment against advanced malignancies. Unfortunately, once administrated in vivo, CAR-T cells become out of artificial control, and fierce response to CAR-T therapy may cause severe adverse events, represented by cytokine-release syndrome and on-target/off-tumor effects. Here, a nanomodified switch strategy is developed, leading to sustained and precise "on-tumor only" activation of CAR-T cells. Here, original gelatinase-responsive nanoparticles (NPs) are used to selectively deliver the heterodimerizing switch, which is the key component of switchable CAR with separated activation modules. The "NanoSwitch" is tumor-specific, thus inactivated switchable CAR-T cells do little harm to normal cells, even if the normal cells express the target of CAR-T. Owing to the sustained-release effect of NPs, the CAR-T cells are activated smoothly, avoiding sudden release of cytokine. These data introduce NanoSwitch as a universal and applicable solution to safety problems of CAR-T therapy regardless of the target.
Collapse
Affiliation(s)
- Xinyue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Xiang Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Luxin Xue
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Anni Chen
- Nanjing Drum Tower HospitalClinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Yuling Qiu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Zhifan Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Lin Li
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Fengcen Liu
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Yishan Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Zhichen Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Ruihan Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Jie Shao
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Manman Tian
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| |
Collapse
|
3
|
Sun Y, Li B, Cao Q, Liu T, Li J. Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment. Stem Cell Res Ther 2022; 13:489. [PMID: 36182897 PMCID: PMC9526954 DOI: 10.1186/s13287-022-03180-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Nanomaterials are developing rapidly in the medical field, bringing new hope for treating various refractory diseases. Among them, polymer nanomaterials, with their excellent properties, have been used to treat various diseases, such as malignant tumors, diabetes, and nervous system diseases. Gastrointestinal cancer is among the cancers with the highest morbidity and mortality worldwide. Cancer stem cells are believed to play an important role in the occurrence and development of tumors. This article summarizes the characteristics of gastrointestinal cancer stem cells and reviews the latest research progress in treating gastrointestinal malignant tumors using polymer nanoparticles to target cancer stem cells. In addition, the review article highlights the potential of polymer nanoparticles in targeting gastrointestinal cancer stem cells.
Collapse
Affiliation(s)
- Yao Sun
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Bo Li
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
4
|
Pan D, Du Y, Li R, Shen A, Liu X, Li C, Hu B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front Cell Dev Biol 2021; 9:741074. [PMID: 34604239 PMCID: PMC8481616 DOI: 10.3389/fcell.2021.741074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Radioresistance conferred by cancer stem cells (CSCs) is the principal cause of the failure of cancer radiotherapy. Eradication of CSCs is a prime therapeutic target and a requirement for effective radiotherapy. Three dimensional (3D) cell-cultured model could mimic the morphology of cells in vivo and induce CSC properties. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in the regulation of radiosensitivity in cancers. In this study, we aim to investigate the effects of miRNAs on the radiosensitivity of 3D cultured stem-like cells. Using miRNA microarray analysis in 2D and 3D cell culture models, we found that the expression of miR-29b-3p was downregulated in 3D cultured A549 and MCF7 cells compared with monolayer (2D) cells. Clinic data analysis from The Cancer Genome Atlas database exhibited that miR-29b-3p high expression showed significant advantages in lung adenocarcinoma and breast invasive carcinoma patients’ prognosis. The subsequent experiments proved that miR-29b-3p overexpression decreased the radioresistance of cells in 3D culture and tumors in vivo through interfering kinetics process of DNA damage repair and inhibiting oncogenes RBL1, PIK3R1, AKT2, and Bcl-2. In addition, miR-29b-3p knockdown enhanced cancer cells invasion and migration capability. MiR-29b-3p overexpression decreased the stemness of 3D cultured cells. In conclusion, our results demonstrate that miR-29b-3p could be a sensitizer of radiation killing in CSC-like cells via inhibiting oncogenes expression. MiR-29b-3p could be a novel therapeutic candidate target for radiotherapy.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yarong Du
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Rong Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chuanyuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
5
|
Jefremow A, Neurath MF. Nanoparticles in Gastrooncology. Visc Med 2020; 36:88-94. [PMID: 32355665 PMCID: PMC7184848 DOI: 10.1159/000506908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastrointestinal malignancies have the greatest incidence and cancer-associated death rates worldwide. Routine therapeutic modalities include surgery, chemotherapy and radiation but they often fail to reach the goal of cancer-free survival. SUMMARY In the light of this urgent medical need for the treatment of GI tumors, nanotech-nology-based approaches, i.e. nanomedicine, promise new therapeutic options. Using nanoparticles instead of classically designed drugs, targeting anticancer agents directly to the tumor site may revolutionize both diagnostic and therapeutic tools thereby facilitating the identification and elimination of malignant cells. Importantly, diagnostic insight and therapeutic effects can be achieved simultaneously through the same nanoparticle. Additionally, a nanoparticle may be loaded with more than one agent, thereby further increasing the value and power of the nanotechnology approach in oncologic therapeutic concepts. Although most insight into mechanisms of nanomedicine has been gained from in vitro and preclinical in vivo models, few clinical trials have been conducted, and nanomedicine-based concepts are already part of standard treatment algorithms. However, despite substantial progress it remains a challenge to design nanoparticles that feature all desirable characteristics at the same time. KEY MESSAGES This review seeks to provide substantial insight into the current status of nanomedicine-based approaches employed for diagnostic and/or therapeutic purposes in the field of gastrointestinal cancers by highlighting achievements and pointing out unresolved issues that need to be further addressed by future research attempts.
Collapse
Affiliation(s)
| | - Markus F. Neurath
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Wang B, Zheng J, Li R, Tian Y, Lin J, Liang Y, Sun Q, Xu A, Zheng R, Liu M, Ji A, Bu J, Yuan Y. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells. Cell Death Dis 2019; 10:764. [PMID: 31601781 PMCID: PMC6787210 DOI: 10.1038/s41419-019-1996-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023]
Abstract
Radiotherapy is essential to treat breast cancer and microRNA (miRNA) miR-200c is considered as a radiosensitizer of breast cancer. However, the molecular mechanisms by which miR-200c regulates radiosensitivity remain largely unknown. In the present study, we showed that induction of miR-200c led to widespread alteration in long noncoding RNA (lncRNA) expression in breast cancer cells. We identified lncRNA LINC02582 as a target of miR-200c. Inhibition of LINC02582 expression increased radiosensitvity, while overexpression of LINC02582 promoted radioresistance. Mechanistically, LINC02582 interacts with deubiquitinating enzyme ubiquitin specific peptidase 7 (USP7) to deubiquitinate and stabilize checkpoint kinase 1 (CHK1), a critical effector kinase in DNA damage response, thus promoting radioresistance. Furthermore, we detected an inverse correlation between the expression of miR-200c vs. LINC02582 and CHK1 in breast cancer samples. These findings identified LINC02582 as a downstream target of miR-200c linking miR-200c to CHK1, in which miR-200c increases radiosensitivity by downregulation of CHK1.
Collapse
Affiliation(s)
- Baiyao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jieling Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yingying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mengzhong Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Aimin Ji
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
7
|
Jiang Y, Jin S, Tan S, Shen Q, Xue Y. MiR-203 acts as a radiosensitizer of gastric cancer cells by directly targeting ZEB1. Onco Targets Ther 2019; 12:6093-6104. [PMID: 31440062 PMCID: PMC6679680 DOI: 10.2147/ott.s197539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Gastric cancer (GC) is a common tumor malignancy with high incidence and poor prognosis. Radiotherapy is one of the main strategies for GC treatment, while development of radioresistance limits the effectiveness. microRNA-203 (miR-203) has been reported to participate in progression of GC, whereas its interaction with radiosensitivity of GC and the related mechanism remain largely unclear. Methods: The expressions of miR-203 and zinc finger E-box binding homeobox 1 (ZEB1) were measured in GC tissues and cells by quantitative real-time polymerase chain reaction or western blot. Survival fraction, cell viability and apoptosis were measured in GC cells after treatment of radiation by colony formation, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay or flow cytometry, respectively. Tumor volume and weight were detected in murine xenograft model after radiation treatment. The interaction between miR-203 and ZEB1 was explored by bioinformatics analysis and luciferase activity assay. Results: miR-203 expression was down-regulated and ZEB1 mRNA level was up-regulated in GC. The expression of miR-203 was associated with radiosensitivity of GC cells. Moreover, overexpression of miR-203 decreased survival fraction, cell viability and tumor growth but promoted cell apoptosis in radiation-treated GC cells. However, knockdown of miR-203 played an opposite effect. ZEB1 was validated as a target of miR-203, and it was involved in miR-203-mediated radiosensitivity of GC cells in vitro and in vivo. Conclusion: miR-203 promoted radiosensitivity of GC cells by targeting ZEB1, indicating miR-203 as a promising radiosensitizer for GC treatment.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Shan Jin
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Shisheng Tan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Qi Shen
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Yingbo Xue
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
8
|
Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J Stem Cells 2019; 11:398-420. [PMID: 31396368 PMCID: PMC6682504 DOI: 10.4252/wjsc.v11.i7.398] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, cancer stem cells (CSCs) have been increasingly identified in many malignancies. CSC-related signaling pathways and their functions provide new strategies for treating cancer. The aberrant activation of related signaling pathways (e.g., Wnt, Notch, and Hedgehog pathways) has been linked to multiple types of malignant tumors, which makes these pathways attractive targets for cancer therapy. CSCs display many characteristic features, such as self-renewal, differentiation, high tumorigenicity, and drug resistance. Therefore, there is an urgent need to develop new therapeutic strategies to target these pathways to control stem cell replication, survival, and differentiation. Notable crosstalk occurs among different signaling pathways and potentially leads to compensatory escape. Therefore, multitarget inhibitors will be one of the main methods to overcome the drug resistance of CSCs. Many small molecule inhibitors of components of signaling pathways in CSCs have entered clinical trials, and some inhibitors, such as vismodegib, sonidegib, and glasdegib, have been approved. Tumor cells are susceptible to sonidegib and vismodegib resistance due to mutations in the Smo protein. The signal transducers and activators of transcription 3 (STAT3) inhibitor BBI608 is being evaluated in a phase III trial for a variety of cancers. Structural derivatives of BBI608 are the main focus of STAT3 inhibitor development, which is another strategy for CSC therapy. In addition to the potential pharmacological inhibitors targeting CSC-related signaling pathways, other methods of targeting CSCs are available, such as nano-drug delivery systems, mitochondrion targeting, autophagy, hyperthermia, immunotherapy, and CSC microenvironment targeting. In addition, we summarize the latest advances in the clinical development of agents targeting CSC-related signaling pathways and other methods of targeting CSCs.
Collapse
Affiliation(s)
- Fang-Yu Du
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Qi-Fan Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Wen-Jiao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
9
|
Zhang J, Zhang H, Qin Y, Chen C, Yang J, Song N, Gu M. MicroRNA-200c-3p/ZEB2 loop plays a crucial role in the tumor progression of prostate carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:141. [PMID: 31157262 DOI: 10.21037/atm.2019.02.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The microRNA (miRNA) miR-200c-3p is involved in the tumorigenesis and progression of a variety of cancers. However, the underlying regulatory role of miR-200c-3p in prostate cancer (PCa) remains unclear. Methods Online databases including Oncomine, Linkedomics and StarBase were used to investigate the clinical significance of miR-200c-3p, along with associated gene targets. PCa tissues and adjacent normal tissues were used for the detection of miR-200c-3p expression. A lentivirus overexpressing miR-200c-3p was constructed and transfected into PC3 and DU145 cells. Cell formation of proliferation, migration, and invasion were determined by cell viability and colony-formation assay, wound healing assay, and Matrigel invasion assay, respectively. Epithelial-mesenchymal transition (EMT)-associated markers were determined by qRT-PCR and Western blot. A luciferase reporter assay was performed to determine the direct relationship of miR-200c-3p and ZEB2. The tumor-suppressive role of miR-200c-3p was further confirmed by a xenograft tumor model and immunohistochemical (IHC) staining. Results Online database analyses showed that miR-200c-3p was associated with pathologic T and N stage in PCa, and miR-200c-3p was downregulated in PCa tissues. Overexpression of miR-200c-3p was considered a tumor suppressor and was found to significantly suppress the formation of migration and invasion in PCa cells via repression of E-cadherin-induced EMT. The bioinformatic database indicated that ZEB2 has a significant correlation with miR-200c-3p and was upregulated in PCa tissues. Further, ZEB2 expression was suppressed by the upregulation of miR-200c-3p and was identified as a direct target of miR-200c-3p. In addition, repression of ZEB2 could restore the levels of miR-200c-3p in PCa cells in turn, suggesting a potential negative loop between miR-200c-3p and ZEB2. miR-200c-3p also had an antitumor effect by negatively regulating ZEB2 in a xenograft mouse model. Conclusions Taken together, the results of our study demonstrated the novel regulatory loop of miR-200c-3/ZEB2 in PCa progression, providing effective therapeutic strategies for PCa in the future.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Hengcheng Zhang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuan Qin
- Department of Urology, Jiangsu Provincial Second Chinese Medicine Hospital, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Chen Chen
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jie Yang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Ninghong Song
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Ghaffari H, Beik J, Talebi A, Mahdavi SR, Abdollahi H. New physical approaches to treat cancer stem cells: a review. Clin Transl Oncol 2018; 20:1502-1521. [PMID: 29869042 DOI: 10.1007/s12094-018-1896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) have been identified as the main center of tumor therapeutic resistance. They are highly resistant against current cancer therapy approaches particularly radiation therapy (RT). Recently, a wide spectrum of physical methods has been proposed to treat CSCs, including high energetic particles, hyperthermia (HT), nanoparticles (NPs) and combination of these approaches. In this review article, the importance and benefits of the physical CSCs therapy methods such as nanomaterial-based heat treatments and particle therapy will be highlighted.
Collapse
Affiliation(s)
- H Ghaffari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - J Beik
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - A Talebi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - S R Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
- Department of Medical Physics and Radiation Biology Research Center, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| | - H Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| |
Collapse
|
11
|
Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5801209. [PMID: 29770167 PMCID: PMC5892229 DOI: 10.1155/2018/5801209] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
Abstract
Radioresistance is one of the primary causes responsible for therapeutic failure and recurrence of cancer. It is well documented that reactive oxygen species (ROS) contribute to the initiation and development of gastric cancer (GC), and the levels of ROS are significantly increased in patients with GC accompanied with abnormal expressions of multiple inflammatory factors. It is also well documented that ROS can activate cancer cells and inflammatory cells, stimulating the release of a variety of inflammatory cytokines, which subsequently mediates the tumor microenvironment (TME) and promotes cancer stem cell (CSC) maintenance as well as renewal and epithelial-mesenchymal transition (EMT), ultimately resulting in radioresistance and recurrence of GC.
Collapse
|
12
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|
13
|
Xie FY, Xu WH, Yin C, Zhang GQ, Zhong YQ, Gao J. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system. World J Gastrointest Oncol 2016; 8:735-744. [PMID: 27795813 PMCID: PMC5064051 DOI: 10.4251/wjgo.v8.i10.735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.
Collapse
|
14
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|