1
|
Varalli L, Berlet R, Abenojar EC, McDaid J, Gascoigne DA, Bailes J, Aksenov DP. Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors. Pharmaceutics 2025; 17:499. [PMID: 40284493 PMCID: PMC12030199 DOI: 10.3390/pharmaceutics17040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Cancers of the central nervous system are particularly difficult to treat due to a variety of factors. Surgical approaches are impeded by the skull-an issue which is compounded by the severity of possible harm that can result from damage to the parenchymal tissue. As a result, chemotherapeutic agents have been the standard of care for brain tumors. While some drugs can be effective on a case-by-case basis, there remains a critical need to improve the efficacy of chemotherapeutic agents for neurological cancers. Recently, advances in iron oxide nanoparticle research have highlighted how their unique properties could be leveraged to address the shortcomings of conventional therapeutics. Iron oxide nanoparticles combine the advantages of good biocompatibility, magnetic susceptibility, and functionalization via a range of coating techniques. Thus, iron oxide nanoparticles could be used in both the imaging of brain cancers with magnetic resonance imaging, as well as acting as trafficking vehicles across the blood-brain barrier for targeted drug delivery. Moreover, their ability to support minimally invasive therapies such as magnetic hyperthermia makes them particularly appealing for neuro-oncological applications, where precision and safety are paramount. In this review, we will outline the application of iron oxide nanoparticles in various clinical settings including imaging and drug delivery paradigms. Importantly, this review presents a novel approach of combining surface engineering and internal magnetic targeting for deep-seated brain tumors, proposing the surgical implantation of internal magnets as a next-generation strategy to overcome the limitations of external magnetic fields.
Collapse
Affiliation(s)
- London Varalli
- Department of Radiology, Endeavor Health, Evanston, IL 60201, USA
| | - Reed Berlet
- School of Medicine and Science, Rosalind Franklin University, North Chicago, IL 60064, USA
- Department of Neurosurgery, Endeavor Health, Evanston, IL 60201, USA (J.B.)
| | - EC Abenojar
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - John McDaid
- Department of Neurosurgery, Endeavor Health, Evanston, IL 60201, USA (J.B.)
| | - David A. Gascoigne
- Department of Radiology, Endeavor Health, Evanston, IL 60201, USA
- The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Julian Bailes
- Department of Neurosurgery, Endeavor Health, Evanston, IL 60201, USA (J.B.)
| | - Daniil P. Aksenov
- Department of Radiology, Endeavor Health, Evanston, IL 60201, USA
- The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesiology, Endeavor Health, Evanston, IL 60201, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and Dental Applications of Titania Nanoparticles: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203670. [PMID: 36296859 PMCID: PMC9611494 DOI: 10.3390/nano12203670] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites).
Collapse
Affiliation(s)
- Afsheen Mansoor
- Department of Dental Material Sciences, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44080, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Talal Khan
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 60650, Pakistan;
| | - Emaan Mansoor
- Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan;
| | - Faaz Ahmad Butt
- Department of Materials Engineering, NED University of Engineering & Technology, Karachi 74200, Pakistan;
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Paulo J. Palma
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
3
|
Lineage Tracing and Molecular Real-Time Imaging of Cancer Stem Cells. BIOSENSORS 2022; 12:bios12090703. [PMID: 36140088 PMCID: PMC9496355 DOI: 10.3390/bios12090703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
The cancer stem cells (CSC) are the roots of cancer. The CSC hypothesis may provide a model to explain the tumor cell heterogeneity. Understand the biological mechanism of CSC will help the early detection and cure of cancer. The discovery of the dynamic changes in CSC will be possible by the using of bio-engineering techniques-lineage tracing. However, it is difficult to obtain real-time, continuous, and dynamic live-imaging information using the traditional approaches that take snapshots of time points from different animals. The goal of molecular imaging is to monitor the in situ, continuous molecular changes of cells in vivo. Therefore, the most advanced bioengineering lineage tracing approach, while using a variety of molecular detection methods, will maximize the presentation of CSC. In this review, we first introduce the method of lineage tracing, and then introduce the various components of molecular images to dynamic detect the CSC. Finally, we analyze the current situation and look forward the future of CSC detection.
Collapse
|
4
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
5
|
Ma XH, Wang S, Liu SY, Chen K, Wu ZY, Li DF, Mi YT, Hu LB, Chen ZW, Zhao XM. Development and in vitro study of a bi-specific magnetic resonance imaging molecular probe for hepatocellular carcinoma. World J Gastroenterol 2019; 25:3030-3043. [PMID: 31293339 PMCID: PMC6603812 DOI: 10.3748/wjg.v25.i24.3030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/03/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks second in terms of cancer mortality worldwide. Molecular magnetic resonance imaging (MRI) targeting HCC biomarkers such as alpha-fetoprotein (AFP) or glypican-3 (GPC3) offers new strategies to enhance specificity and help early diagnosis of HCC. However, the existing iron oxide nanoparticle-based MR molecular probes singly target AFP or GPC3, which may hinder their efficiency to detect heterogeneous micro malignant HCC tumors < 1 cm (MHCC). We hypothesized that the strategy of double antibody-conjugated iron oxide nanoparticles which simultaneously target AFP and GPC3 antigens may potentially be used to overcome the tumor heterogeneity and enhance the detection rate for MRI-based MHCC diagnosis.
AIM To synthesize an AFP/GPC3 double antibody-labeled iron oxide MRI molecular probe and to assess its impact on MRI specificity and sensitivity at the cellular level.
METHODS A double antigen-targeted MRI probe for MHCC anti-AFP–USPIO–anti-GPC3 (UAG) was developed by simultaneously conjugating AFP andGPC3 antibodies to a 5 nm ultra-small superparamagnetic iron oxide nanoparticle (USPIO). At the same time, the singly labeled probes of anti-AFP–USPIO (UA) and anti-GPC3–USPIO (UG) and non-targeted USPIO (U) were also prepared for comparison. The physical characterization including morphology (transmission electron microscopy), hydrodynamic size, and zeta potential (dynamic light scattering) was conducted for each of the probes. The antigen targeting and MRI ability for these four kinds of USPIO probes were studied in the GPC3-expressing murine hepatoma cell line Hepa1-6/GPC3. First, AFP and GPC3 antigen expression in Hepa1-6/GPC3 cells was confirmed by flow cytometry and immunocytochemistry. Then, the cellular uptake of USPIO probes was investigated by Prussian blue staining assay and in vitro MRI (T2-weighted and T2-map) with a 3.0 Tesla clinical MR scanner.
RESULTS Our data showed that the double antibody-conjugated probe UAG had the best specificity in targeting Hepa1-6/GPC3 cells expressing AFP and GPC3 antigens compared with single antibody-conjugated and unconjugated USPIO probes. The iron Prussian blue staining and quantitative T2-map MRI analysis showed that, compared with UA, UG, and U, the uptake of double antigen-targeted UAG probe demonstrated a 23.3% (vs UA), 15.4% (vs UG), and 57.3% (vs U) increased Prussian stained cell percentage and a 14.93% (vs UA), 9.38% (vs UG), and 15.3% (vs U) reduction of T2 relaxation time, respectively. Such bi-specific probe might have the potential to overcome tumor heterogeneity. Meanwhile, the coupling of two antibodies did not influence the magnetic performance of USPIO, and the relatively small hydrodynamic size (59.60 ± 1.87 nm) of double antibody-conjugated USPIO probe makes it a viable candidate for use in MHCC MRI in vivo, as they are slowly phagocytosed by macrophages.
CONCLUSION The bi-specific probe presents enhanced targeting efficiency and MRI sensitivity to HCC cells than singly- or non-targeted USPIO, paving the way for in vivo translation to further evaluate its clinical potential.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Si-Yun Liu
- GE Healthcare (China), Beijing 100176, China
| | - Kun Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Zhi-Yuan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Deng-Feng Li
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Tao Mi
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Long-Bin Hu
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | - Xin-Ming Zhao
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
6
|
Narkhede AA, Sherwood JA, Antone A, Coogan KR, Bolding MS, Deb S, Bao Y, Rao SS. Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17157-17166. [PMID: 31017392 DOI: 10.1021/acsami.9b00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasmall iron oxide nanoparticles (USIONPs) (<4 nm) have recently attracted significant attention because of their potential as positive T1 magnetic resonance imaging (MRI) contrast agent contrary to larger superparamagnetic iron oxide nanoparticles (>6 nm) which act as negative T2 MRI contrast agents. However, studies on the cellular uptake behavior of these nanoparticles are very limited compared to their counterpart, larger-sized superparamagnetic iron oxide nanoparticles. In particular, the effects of specific nanoparticle parameters on the cellular uptake behavior of USIONPs by various cancer cells are not available. Here, we specifically investigated the role of USIONPs' surface functionalities [tannic acid (TA) and quinic acid (QA)] in mediating cellular uptake behavior of cancer cells pertaining to primary (U87 cells) and metastatic (MDA-MB-231Br cells) brain malignancies. Here, we chose TA and QA as representative capping molecules, wherein TA coating provides a general negatively charged nontargeting surface while QA provides a tumor-targeting surface as QA and its derivatives are known to interact with selectin receptors expressed on tumor cells and tumor endothelium. We observed differential cellular uptake in the case of TA- and QA-coated USIONPs by cancer cells. Both the cell types showed significantly higher cellular uptake of QA-coated USIONPs compared to TA-coated USIONPs at 4, 24, and 72 h. Blocking studies indicated that P-selectin cell surface receptors, in part, mediated the cellular uptake of QA-coated USIONPs. Given that P-selectin is overexpressed in cancer cells, tumor microenvironment, and at the metastatic niche, QA-coated USIONPs hold potential to be utilized as a platform for tumor-targeted drug delivery and in imaging and detection of primary and metastatic tumors.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Jennifer A Sherwood
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Angelo Antone
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Kasie R Coogan
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Mark S Bolding
- Department of Radiology , The University of Alabama at Birmingham , Birmingham , Alabama 35233 , United States
| | - Sanghamitra Deb
- Central Analytical Facility , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Yuping Bao
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| |
Collapse
|
7
|
Bai MY, Tang SL, Chuang MH, Wang TY, Hong PD. Evaluation of Chitosan Derivative Microparticles Encapsulating Superparamagnetic Iron Oxide and Doxorubicin as a pH-Sensitive Delivery Carrier in Hepatic Carcinoma Treatment: An in vitro Comparison Study. Front Pharmacol 2018; 9:1025. [PMID: 30298001 PMCID: PMC6160595 DOI: 10.3389/fphar.2018.01025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
We developed a novel, pH-sensitive drug delivery microparticle based on N-palmitoyl chitosan (NPCS) to transport the superparamagnetic iron oxide (SPIO) and anticancer drug doxorubicin (DOX). The characteristics of NPCS were characterized through nuclear magnetic resonance. Our results based on testing of volume swelling in multiple pH aqueous solutions revealed that the modified chitosan had a pH-sensitive property. The morphology and size of the DOX-SPIO/NPCS microparticles were investigated using transmission electron microscopy and scanning electron microscopy. The statistical result of microparticles had diameter of 185 ± 87 nm. Surface chemical moieties of DOX-SPIO/NPCS microparticles were confirmed using attenuated total reflection Fourier transform infrared spectroscopy and indicated the existence of mostly hydrophilic groups such as -OH, -C=O, and -C-O-C-. Transmission electron microscopy revealed the dark contrast of SPIO dots encapsulated in the NPCS matrix. Nuclear magnetic resonance T2-weighted magnetic resonance imaging confirmed that the produced DOX-SPIO/NPCS microparticles still exhibited T2 relaxation durations as short as 37.68 ± 8.69 ms (under administration of 2.5 μg/mL), which is comparable to the clinically required dosage. In the drug release profile, the DOX-SPIO/NPCS drug delivery microparticle was accelerated in an acidic environment (pH 6.5) compared with that in a basic environment. Microparticles in a cytotoxicity assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) revealed that DOX-SPIO/NPCS microparticles had better antitumor ability than did free-form of DOX. Additionally, microparticles loaded with 0.5–5 μg/mL DOX in an acidic environment (pH 6.5) demonstrated higher efficacy against Hep G2 cell growth, possibly because of the swelling effect of NPCS, resulting in volume expansion and easy drug release. Accordingly, these large DOX-SPIO/NPCS microparticles showed potential for application as a pH-sensitive drug delivery system and as chemoembolization particles for hepatic carcinoma therapy.
Collapse
Affiliation(s)
- Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Adjunct appointment to the Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan.,Global Taiwan Center for Excellence for Thin-Film Metallic Glass, Taipei, Taiwan
| | - Sung-Ling Tang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Meng-Han Chuang
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ting-Ying Wang
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Po-da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
8
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|