1
|
Hannouneh ZA, Cervantes CE, Hanouneh M, Atta MG. Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic Kidney Disease and beyond. GLOMERULAR DISEASES 2025; 5:119-132. [PMID: 40084183 PMCID: PMC11906174 DOI: 10.1159/000543685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 03/16/2025]
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have significantly impacted the management of diabetic kidney disease (DKD) and heart failure (HF), providing benefits beyond glycemic control. This review examines the mechanisms through which SGLT2is provide renal and cardiovascular protection and assesses their clinical efficacy. Summary By inducing glucosuria and natriuresis, SGLT2is alleviate multiple complications induced by chronic hyperglycemia. Moreover, SGLT2is reduce albuminuria, improve tubular function, and modulate erythropoiesis. Additionally, they mitigate inflammation and fibrosis by decreasing oxidative stress and downregulating proinflammatory pathways. Clinical trials have demonstrated significant reductions in renal and cardiovascular events among patients with type 2 diabetes mellitus. A comprehensive review of the literature was conducted through PubMed, highlighting the effects of SGLT2is and the results of major clinical trials involving SGLT2is. Key Messages SGLT2is play a crucial role in the management of DKD and HF by addressing multiple pathogenic pathways. Currently, SGLT2is are included in clinical guidelines for DKD and HF management, and their benefits extend to nondiabetic populations. Further research is needed to explore SGLT2is' multifaceted mechanisms and potential applications across diverse patient populations and different disease etiologies.
Collapse
Affiliation(s)
| | - C. Elena Cervantes
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mohamad Hanouneh
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Nephrology Center of Maryland, Baltimore, MD, USA
| | - Mohamed G. Atta
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Wu J, Chen Y, Shi S, Liu J, Zhang F, Li X, Liu X, Hu G, Dong Y. Exploration of Pharmacological Mechanisms of Dapagliflozin against Type 2 Diabetes Mellitus through PI3K-Akt Signaling Pathway based on Network Pharmacology Analysis and Deep Learning Technology. Curr Comput Aided Drug Des 2025; 21:452-465. [PMID: 38204223 DOI: 10.2174/0115734099274407231207070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Dapagliflozin is commonly used to treat type 2 diabetes mellitus (T2DM). However, research into the specific anti-T2DM mechanisms of dapagliflozin remains scarce. OBJECTIVE This study aimed to explore the underlying mechanisms of dapagliflozin against T2DM. METHODS Dapagliflozin-associated targets were acquired from CTD, SwissTargetPrediction, and SuperPred. T2DM-associated targets were obtained from GeneCards and DigSee. VennDiagram was used to obtain the overlapping targets of dapagliflozin and T2DM. GO and KEGG analyses were performed using clusterProfiler. A PPI network was built by STRING database and Cytoscape, and the top 30 targets were screened using the degree, maximal clique centrality (MCC), and edge percolated component (EPC) algorithms of CytoHubba. The top 30 targets screened by the three algorithms were intersected with the core pathway-related targets to obtain the key targets. DeepPurpose was used to evaluate the binding affinity of dapagliflozin with the key targets. RESULTS In total, 155 overlapping targets of dapagliflozin and T2DM were obtained. GO and KEGG analyses revealed that the targets were primarily enriched in response to peptide, membrane microdomain, protein serine/threonine/tyrosine kinase activity, PI3K-Akt signaling pathway, MAPK signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. AKT1, PIK3CA, NOS3, EGFR, MAPK1, MAPK3, HSP90AA1, MTOR, RELA, NFKB1, IKBKB, ITGB1, and TP53 were the key targets, mainly related to oxidative stress, endothelial function, and autophagy. Through the DeepPurpose algorithm, AKT1, HSP90AA1, RELA, ITGB1, and TP53 were identified as the top 5 anti-targets of dapagliflozin. CONCLUSION Dapagliflozin might treat T2DM mainly by targeting AKT1, HSP90AA1, RELA, ITGB1, and TP53 through PI3K-Akt signaling.
Collapse
Affiliation(s)
- Jie Wu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Yufan Chen
- Department of Blood Donation Service, Central Blood Station of Jinhua, Jinhua, Zhejiang, China
| | - Shuai Shi
- Department of IVF, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Junru Liu
- Department of Endocrinology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Fen Zhang
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xingxing Li
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xizhi Liu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Guoliang Hu
- Department of Ultrasound in Medicine, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Yang Dong
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Somaili M, Oraibia O, Darraj M, Hassan A, Moafa E, Kulaybi A, Shubayli S, Moafa R, Mghfori G, Jaafari A, Somily M. Assessment of Knowledge and Perception of Sodium-Glucose Co-transporter 2 (SGLT-2) Inhibitors Prescription among Physicians in Saudi Arabia. Curr Diabetes Rev 2024; 20:e060723218471. [PMID: 37415371 DOI: 10.2174/1573399820666230706125244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors are a new class of medications that have been proven to improve both glycemic control and cardio-renal outcomes. The knowledge, attitude, and perception toward their prescriptions in Jazan, Saudi Arabia, are still unknown. OBJECTIVE The study aimed to measure the level of knowledge and attitude toward sodium-glucose cotransporter 2 inhibitors prescription among physicians in the Jazan region, Saudi Arabia. METHODS Data analysis was performed using Statistical Package for the Social Sciences, SPSS 23rd version. Frequency and percentages were used to display categorical variables. Minimum, maximum, mean, and standard deviation were used to test numerical variables. Independent t-test and ANOVA test were both utilized to test the factors associated with knowledge and attitude toward the use of SGLT-2 inhibitors. RESULTS A total of 65 participants were included in the study. 26.2% had a low knowledge level, 30.8% had a moderate knowledge level, and 43.1% had a high knowledge level of sodium-glucose cotransporter 2 inhibitors. 9.2% had a low attitude level, 43.1% had a moderate attitude level, and 47.7% had a high attitude level toward sodium-glucose cotransporter 2 inhibitors. Age, professional status, years of experience, and specialty were significantly associated with attitude but not with the knowledge of sodium-glucose cotransporter 2 inhibitors prescription. CONCLUSION While the study cohort scored high in the knowledge and attitude domains of the survey, a large proportion failed to answer very essential questions in type 2 diabetes management. An educational awareness program needs to be carried out to strengthen the physicians' knowledge of SGLT2 inhibitors prescription.
Collapse
Affiliation(s)
- Mohammed Somaili
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Omar Oraibia
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Majed Darraj
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Amal Hassan
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Esaam Moafa
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Abdulrahman Kulaybi
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Sahar Shubayli
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Razan Moafa
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Ghadah Mghfori
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Afaf Jaafari
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
5
|
Moysidou GS, Mastrogiorgakis D, Boumpas D, Bertsias G. Management of systemic lupus erythematosus: A new scenario. Best Pract Res Clin Rheumatol 2023; 37:101895. [PMID: 37978040 DOI: 10.1016/j.berh.2023.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The introduction of targeted biological agents in systemic lupus erythematosus (SLE) has created a momentum for improving overall disease management and patients' prognosis. To achieve this, a comprehensive strategy is required spanning the entire patient journey from diagnosis to prevention and management of late complications and comorbidities. In this review, we focus on four aspects that are closely linked to SLE prognosis, namely early disease recognition and treatment initiation, reduction of the cumulative glucocorticoid exposure, attainment of well-defined targets of remission and low disease activity, prevention of flares and, kidney-protective strategies with non-immune-directed agents. We review the recent literature related to these topics in conjunction with the existing treatment recommendations, highlighting areas of uncertainty and providing guidance towards facilitating the care of SLE patients.
Collapse
Affiliation(s)
- Georgia-Savina Moysidou
- Rheumatology-Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Mastrogiorgakis
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Iraklio and University of Crete Medical School, Iraklio, Greece
| | - Dimitrios Boumpas
- Rheumatology-Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece; Laboratory of Autoimmunity and Inflammation, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - George Bertsias
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Iraklio and University of Crete Medical School, Iraklio, Greece; Laboratory of Rheumatology, Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology - Hellas (FORTH), Iraklio, Greece.
| |
Collapse
|
6
|
Dhakal B, Shiwakoti S, Park EY, Kang KW, Schini-Kerth VB, Park SH, Ji HY, Park JS, Ko JY, Oak MH. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci Rep 2023; 13:6256. [PMID: 37069192 PMCID: PMC10110533 DOI: 10.1038/s41598-023-33086-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Nano plastics (NPs) have been a significant threat to human health and are known to cause premature endothelial senescence. Endothelial senescence is considered one of the primary risk factors contributing to numerous cardiovascular disorders. Recent studies have suggested that inhibition of sodium glucose co-transporter (SGLT2) ameliorates endothelial senescence and dysfunction. Therefore, our study intends to explore the role of SGLT2 in NPs-induced endothelial senescence and dysfunction. Porcine coronary artery and its endothelial cells were treated with NPs in the presence or absence of Enavogliflozin (ENA), a SGLT2 inhibitor and then SGLTs expression, senescence markers and vascular function were evaluated. NPs significantly up-regulated SGLT2 and ENA significantly decreased NPs-induced senescence-associated-β-gal activity, cell-cycle arrest, and senescence markers p53 and p21 suggesting that inhibition of SGLT2 prevents NPs-induced endothelial senescence. In addition, ENA decreased the formation of reactive oxygen species with the downregulation of Nox2, and p22phox. Furthermore, SGLT2 inhibition also up regulated the endothelial nitric oxide synthase expression along with improving vascular function. In conclusion, premature endothelial senescence by NPs is, at least in part, associated with SGLT2 and it could be a potential therapeutic target for preventing and/or treating environmental pollutants-induced cardiovascular disorders mediated by endothelial senescence and dysfunction.
Collapse
Affiliation(s)
- Bikalpa Dhakal
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Sun-Hwa Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Hye-Young Ji
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Joon Seok Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
7
|
Therapeutic efficacy of dapagliflozin on diabetic kidney disease in rats. Int Immunopharmacol 2022; 113:109272. [DOI: 10.1016/j.intimp.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
8
|
Meloni M, Bellia A, Giurato L, Lauro D, Uccioli L. Below-the-ankle arterial disease: a new marker of coronary artery disease in patients with diabetes and foot ulcers. Acta Diabetol 2022; 59:1331-1338. [PMID: 35864261 DOI: 10.1007/s00592-022-01932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/01/2022]
Abstract
AIM The aim of the current study is to evaluate the association between below-the-ankle (BTA) arterial disease and coronary artery disease (CAD) in patients with diabetic foot ulcers (DFUs). METHODS The study group was composed of patients with an active neuro-ischaemic DFUs managed in a tertiary care diabetic foot clinic. All patients received a pre-set limb salvage protocol including lower limb revascularization. By a retrospective analysis of individual angiograms, patients were divided in two groups: below-the-ankle (BTA) and above-the-ankle (ATA) arterial disease groups. The rate of CAD at baseline assessment and the new events of acute myocardial ischaemia (AMI) during 1-year of follow-up were evaluated and compared between the two groups. RESULTS Two hundreds seventy-two (272) patients were included, 120 (44.1%) showed BTA arterial disease while 152 (55.9%) ATA arterial disease. The mean age was 68.9 ± 9.6 years, 198 (72.8%) were male, 246 (90.4%) had type 2 diabetes, the mean diabetes duration was 20.7 ± 11.6 years, the mean HbA1c was 7.8 ± 4.2% (62 ± 22 mmmol/mol). The whole population reported CAD in 172 cases (63.4%), and the rate in the BTA group was significantly higher than in ATA group, respectively, 90 (75.4%) vs 82 (54.1%), p < 0.0001. During the follow-up, BTA group had 5% of new cases of AMI in comparison to 1.3% in ATA group (p < 0.001). At the multivariate analysis BTA resulted an independent marker of CAD [OR 1.9 CI 9 5% (1.3-4.5) p = 0.0001]. CONCLUSION The current study shows a significant association between BTA arterial disease and CAD. A close cardiovascular screen should be required in patients with DFUs.
Collapse
Affiliation(s)
- Marco Meloni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy.
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Laura Giurato
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Kamel AS, Wahid A, Abdelkader NF, Ibrahim WW. Boosting amygdaloid GABAergic and neurotrophic machinery via dapagliflozin-enhanced LKB1/AMPK signaling in anxious demented rats. Life Sci 2022; 310:121002. [PMID: 36191679 DOI: 10.1016/j.lfs.2022.121002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Anxiety is a neuropsychiatric disturbance that is commonly manifested in various dementia forms involving Alzheimer's disease (AD). The mechanisms underlying AD-associated anxiety haven't clearly recognized the role of energy metabolism in anxiety represented by the amygdala's autophagic sensors; liver kinase B1 (LKB1)/adenosine monophosphate kinase (AMPK). Dapagliflozin (DAPA), a SGLT2 inhibitor, acts as an autophagic activator through LKB1 activation in several diseases including AD. Herein, the propitious yet undetected anxiolytic potential of DAPA as an autophagic enhancer was investigated in AD animal model with emphasis on amygdala's GABAergic neurotransmission and brain-derived neurotrophic factor (BDNF). Alzheimer's disease was induced by ovariectomy (OVX) along with seventy-days-D-galactose (D-Gal) administration (150 mg/kg/day, i.p). On the 43rd day of D-Gal injection, OVX/D-Gal-subjected rats received DAPA (1 mg/kg/day, p.o) alone or with dorsomorphin the AMPK inhibitor (DORSO, 25 μg/rat, i.v.). In the amygdala, LKB1/AMPK were activated by DAPA inducing GABAB2 receptor stimulation; an effect that was abrogated by DORSO. Dapagliflozin also replenished the amygdala GABA, NE, and 5-HT levels along with glutamate suppression. Moreover, DAPA triggered BDNF production with consequent activation of its receptor, TrkB through activating GABAB2-related downstream phospholipase C/diacylglycerol/protein kinase C (PLC/DAG/PKC) signaling. This may promote GABAA expression, verifying the crosstalk between GABAA and GABAB2. The DAPA's anxiolytic effect was visualized by improved behavioral traits in elevated plus maze together with amendment of amygdala' histopathological abnormalities. Thus, the present study highlighted DAPA's anxiolytic effect which was attributed to GABAB2 activation and its function to induce BDNF/TrkB and GABAA expression through PLC/DAG/PKC pathway in AMPK-dependent manner.
Collapse
Affiliation(s)
- Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
10
|
Piossek F, Beneke S, Schlichenmaier N, Mucic G, Drewitz S, Dietrich DR. Physiological oxygen and co-culture with human fibroblasts facilitate in vivo-like properties in human renal proximal tubular epithelial cells. Chem Biol Interact 2022; 361:109959. [DOI: 10.1016/j.cbi.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
11
|
Xie L, Xiao Y, Tai S, Yang H, Zhou S, Zhou Z. Emerging Roles of Sodium Glucose Cotransporter 2 (SGLT-2) Inhibitors in Diabetic Cardiovascular Diseases: Focusing on Immunity, Inflammation and Metabolism. Front Pharmacol 2022; 13:836849. [PMID: 35295328 PMCID: PMC8920092 DOI: 10.3389/fphar.2022.836849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most fast evolving global issues characterized by hyperglycemia. Patients with diabetes are considered to face with higher risks of adverse cardiovascular events. Those are the main cause of mortality and disability in diabetes patients. There are novel antidiabetic agents that selectively suppress sodium-glucose cotransporter-2 (SGLT-2). They work by reducing proximal tubule glucose reabsorption. Although increasing evidence has shown that SGLT-2 inhibitors can contribute to a series of cardiovascular benefits in diabetic patients, including a reduced incidence of major adverse cardiovascular events and protection of extracardiac organs, the potential mechanisms of SGLT2 inhibitors’ cardiovascular protective effects are still not fully elucidated. Given the important role of inflammation and metabolism in diabetic cardiovascular diseases, this review is intended to rationally compile the multifactorial mechanisms of SGLT-2 inhibitors from the point of immunity, inflammation and metabolism, depicting the fundamental cellular and molecular processing of SGLT-2 inhibitors exerting regulating immunity, inflammation and metabolism. Finally, future directions and perspectives to prevent or delay cardiovascular complications in DM by SGLT-2 inhibitors are presented.
Collapse
Affiliation(s)
- Lingxiang Xie
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huijie Yang
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Abdelaziz MA, Shaldam M, El-Domany RA, Belal F. Multi-Spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120298. [PMID: 34464920 DOI: 10.1016/j.saa.2021.120298] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Dapagliflozin (DAPA) is a selective sodium-glucose cotransporter-2 inhibitor that reduces renal glucose reabsorption. The drug has recently become a crucial milestone in the management of diabetes and heart failure. In this study, the interaction of DAPA with bovine serum albumin (BSA) was investigated for the first time using various fluorescence spectroscopic techniques, UV-absorption spectroscopy, molecular docking, and molecular dynamic (MD) simulation. The fluorescence spectroscopic titration study performed at different temperatures showed that DAPA quenched the fluorescence of BSA through a combination of dynamic and static mechanisms, which was confirmed by UV absorption, fluorescence-resonance energy transfer measurements, and MD simulation. The binding thermodynamic parameters demonstrated that the binding stoichiometry between BSA and DAPA was 1:1. Competitive binding experiments using site-specific markers as well as molecular docking studies showed that DAPA binds to site I on BSA. The positive values of enthalpy change (ΔH) and entropy change (ΔS) revealed that hydrophobic forces played a predominant role in the binding of DAPA to BSA, whereas the negative value of Gibbs free energy change (ΔG) indicated the spontaneity of the interaction. Moreover, the synchronous fluorescence spectroscopy has shown that DAPA binding to the protein molecule occurs in the vicinity of the tryptophan residue. These findings were confirmed by the molecular docking and MD simulation studies.
Collapse
Affiliation(s)
- Mohamed A Abdelaziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| |
Collapse
|
13
|
Jamalizadeh M, Hasanzad M, Sarhangi N, Sharifi F, Nasli-Esfahani E, Larijani B. Pilot study in pharmacogenomic management of empagliflozin in type 2 diabetes mellitus patients. J Diabetes Metab Disord 2021; 20:1407-1413. [PMID: 34900792 DOI: 10.1007/s40200-021-00874-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder in which the patients with high blood sugar develop insufficient insulin secretion or insulin resistance. The solute carrier family, 5 member 2 (SLC5A2) gene is a member of sodium/glucose transporter family which can reduce heart and kidney problems. The current study aims to look into any association between rs11646054 variant in SLC5A2 gene and the anti-diabetic efficacy and safety of empagliflozin. Methods 14 T2DM who failed to respond to previous treatments, empagliflozin 10 mg was added for 6 months. Genotyping of the rs11646054 variant of SLC5A2 gene was performed by polymerase chain reaction (PCR) followed by Sanger sequencing. Results Although hemoglobin A1c (HbA1c) and low-density lipoprotein (LDL) were not significantly different, but the mean fasting blood sugar (FBS), 2-h post prandial (2hpp), albumin-to-creatinine ratio (ACR), and total cholesterol (TC) were significantly decreased after 6 months empagliflozin treatment. There was a significant difference in the mean final reductions in FBS level among genotypes. It's important to mention that those who were GG homozygotes had a tendency to have more decrements. Conclusions The study results indicate that effects of variation in SLC5A2 (rs11646054) on the clinical efficacy of empagliflozin were negligible.
Collapse
Affiliation(s)
- Mahdieh Jamalizadeh
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, No.10-Jalal-e-Ale-Ahmad Street, Chamran Highway, 1411713119 Tehran, Iran
| |
Collapse
|
14
|
Muhammad RN, Ahmed LA, Abdul Salam RM, Ahmed KA, Attia AS. Crosstalk Among NLRP3 Inflammasome, ET BR Signaling, and miRNAs in Stress-Induced Depression-Like Behavior: a Modulatory Role for SGLT2 Inhibitors. Neurotherapeutics 2021; 18:2664-2681. [PMID: 34664178 PMCID: PMC8804152 DOI: 10.1007/s13311-021-01140-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is an overwhelming health concern, and many patients fail to optimally respond to available standard therapies. Neuroplasticity and blood-brain barrier (BBB) integrity are the cornerstones of a well-functioning central nervous system, but they are vulnerable to an overly active NLRP3 inflammasome pathway that can also indirectly trigger the release of ET-1 and contribute to the ET system disturbance, which further damages stress resilience mechanisms. Here, the promising yet unexplored antidepressant potential of dapagliflozin (Dapa), a sodium-glucose co-transporter-2 inhibitor, was investigated by assessing its role in the modulation of the NLRP3 inflammasome pathway and ETBR signal transduction, and their impact on neuroplasticity and BBB integrity in an animal model of depression. Dapa (1 mg/kg/day; p.o.) with and without BQ-788 (1 mg/kg/day; i.p.), a specific ETBR blocker, were administered to adolescent male Wistar rats exposed to a 5-week chronic unpredictable stress protocol. The depressive animals demonstrated marked activation of the NLRP3 inflammasome pathway (NF-κB/NLRP3/caspase-1/IL/TNF-α), which was associated with both peripheral and central inflammatory responses. The ET system was disrupted, with noticeable reduction in miR-125a-5p and ETBR gene expression. Cortical ZO-1 expression was downregulated under the influence of NLRP3/TNF-α/miR-501-3p signaling, along with a prominent reduction in hippocampal BDNF and synapsin-1. With ETBR up-regulation being a cornerstone outcome, Dapa administration efficiently created an overall state of resilience, improved histopathological and behavioral variables, and preserved BBB function. These observations were further verified by the results obtained with BQ-788 co-administration. Thus, Dapa may exert its antidepressant action by reinforcing BBB integrity and promoting neuroplasticity through manipulation of the NLRP3/ET-1/ETBR/BDNF/ZO-1 axis, with a significant role for ETBR signaling. Graphical illustration for the proposed mechanisms of the anti-depressant potential of Dapa. Dapa suppressed NLRP3 inflammasome activation and assembly with subsequent inhibition of pro-inflammatory ILs. This results in attenuation of neuro-inflammation, BBB disruption, glial cell activation, TNF-α and ET-1 release, and the enhanced production of neurotrophins. The role of ETBR signaling was emphasized; Dapa possibly augmented ETBR expression, which is thought to boost neurotrophins production. The ETBR blocker, BQ-788, suppressed most of the positive outcomes of Dapa. Finally, miR-125a-5p and miR-501-3p that played major roles in these pathological pathways were modulated by Dapa. It is not yet clear whether Dapa has a direct or rather indirect effect on their expression. BBB, blood-brain barrier; Dapa, dapagliflozin; ET-1, endothelin-1; ETBR, endothelin B receptor; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3; TNF-α, tumor necrosis factor-α. Created with BioRender.com.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rania M Abdul Salam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biology, School of Pharmacy, New Giza University, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amina S Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
15
|
Renganathan S, Manokaran S, Vasanthakumar P, Singaravelu U, Kim PS, Kutzner A, Heese K. Phytochemical Profiling in Conjunction with In Vitro and In Silico Studies to Identify Human α-Amylase Inhibitors in Leucaena leucocephala (Lam.) De Wit for the Treatment of Diabetes Mellitus. ACS OMEGA 2021; 6:19045-19057. [PMID: 34337243 PMCID: PMC8320072 DOI: 10.1021/acsomega.1c02350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 05/12/2023]
Abstract
Bioactive constituents from natural sources are of great interest as alternatives to synthetic compounds for the treatment of various diseases, including diabetes mellitus. In the present study, phytochemicals present in Leucaena leucocephala (Lam.) De Wit leaves were identified by gas chromatography-mass spectrometry and further examined by qualitative and quantitative methods. α-Amylase enzyme activity assays were performed and revealed that L. leucocephala (Lam.) De Wit leaf extract inhibited enzyme activity in a dose-dependent manner, with efficacy similar to that of the standard α-amylase inhibitor acarbose. To determine which phytochemicals were involved in α-amylase enzyme inhibition, in silico virtual screening of the absorption, distribution, metabolism, excretion, and toxicity properties was performed and pharmacophore dynamics were assessed. We identified hexadecenoic acid and oleic acid ((Z)-octadec-9-enoic acid) as α-amylase inhibitors. The binding stability of α-amylase to those two fatty acids was confirmed in silico by molecular docking and a molecular dynamics simulation performed for 100 ns. Together, our findings indicate that L. leucocephala (Lam.) De Wit-derived hexadecanoic acid and oleic acid are natural product-based antidiabetic compounds that can potentially be used to manage diabetes mellitus.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department
of Bioinformatics, Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
| | - Sakthivel Manokaran
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Preethi Vasanthakumar
- Department
of Biotechnology, Bharath College of Science
and Management, Thanjavur 613005, Tamil Nadu, India
| | - Usha Singaravelu
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Pok-Son Kim
- Department
of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea
| | - Arne Kutzner
- Department
of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Klaus Heese
- Graduate
School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|