1
|
Parry S, Leite R, Esplin MS, Bukowski R, Zhang H, Varner M, Andrews WW, Saade GR, Ilekis J, Reddy UM, Huang H, Sadovsky Y, Blair IA, Biggio J. Cervicovaginal fluid proteomic analysis to identify potential biomarkers for preterm birth. Am J Obstet Gynecol 2020; 222:493.e1-493.e13. [PMID: 31758918 PMCID: PMC7196033 DOI: 10.1016/j.ajog.2019.11.1252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Spontaneous preterm birth is a leading cause of neonatal morbidity and mortality. Early identification of at-risk women by reliable screening tests could reduce the spontaneous preterm birth rate, but conventional methods such as obstetrical history and maternal cervical length screening identify only a minority of spontaneous preterm birth cases. Cervicovaginal fluid might prove to be a useful, readily available biological fluid for identifying spontaneous preterm birth biomarkers. OBJECTIVE The objective of the study was to identify cervicovaginal fluid biomarkers of early spontaneous preterm birth in a high-risk cohort of pregnant women with a history of spontaneous preterm birth using targeted and shotgun proteomic analyses. STUDY DESIGN A nested case control study (cases were spontaneous preterm birth <34 weeks in the current pregnancy; controls were spontaneous labor and delivery at 39-41 weeks) was performed using cervicovaginal fluid samples collected at 3 study visits (100/7 to 186/7 weeks, 190/7 to 236/7 weeks, and 280/7 to 316/7 weeks). All participants had a history of at least 1 prior spontaneous preterm birth. Targeted proteomic analysis was performed using a stable isotope-labeled proteome derived from endocervical and vaginal mucosal cells. This served as a standard to quantitate candidate protein levels in individual cervicovaginal fluid samples from the second and third study visits using liquid chromatography-multiple reaction monitoring mass spectrometry. The ratio of endogenous peptide area/stable isotope-labeled proteome-derived peptide area was used to measure levels of 42 peptides in 22 proteins. To maximize biomarker discovery in the cervicovaginal fluid samples, shotgun proteomic analysis also was performed utilizing liquid chromatography and ion trap mass spectrometry. A validation study was performed in second-trimester cervicovaginal fluid samples from an independent study group (12 spontaneous preterm birth cases, 19 term delivery controls) using enzyme-linked immunosorbent assay for 5 proteins expressed at higher levels in spontaneous preterm birth cases compared with controls in targeted or shotgun proteomic analyses. RESULTS For targeted proteomics, cervicovaginal fluid samples from 33 cases and 32 controls at 190/7 to 236/7 weeks and 16 cases and 14 controls at 280/7 to 316/7 weeks from the same pregnancies were analyzed. When samples were compared between cases and controls, the relative abundance of 5 proteins was greater (P = .02-.05) in cases at both visits, while the relative abundance of 1 protein was lower (P = .03) in cases at both visits. For shotgun proteomics analyses, cervicovaginal fluid samples were pooled for 9 spontaneous preterm birth cases and 9 term delivery controls at each study visit. Shotgun proteomics yielded 28 proteins that were detected at levels >2 times higher and 1 protein that was detected at a level <0.5 times lower in spontaneous preterm birth cases compared with controls at all 3 study visits. Validation enzyme-linked immunosorbent assay for 5 proteins that were detected at higher levels in cervicovaginal fluid samples from spontaneous preterm birth cases compared with term delivery controls in proteomics analyses did not demonstrate statistically significant differences between spontaneous preterm birth cases and controls. CONCLUSIONS Potential biomarkers of spontaneous preterm birth were identified by targeted and shotgun proteomics analyses in cervicovaginal fluid samples from high-risk, asymptomatic women. Many of the proteins detected at higher levels in cervicovaginal fluid samples from spontaneous preterm birth cases are extracellular matrix proteins and/or regulate cell membrane physiology. These proteins have substantial biological interest, but validation enzyme-linked immunosorbent assay for 5 of these proteins did not yield clinically useful biomarkers for spontaneous preterm birth.
Collapse
Affiliation(s)
- Samuel Parry
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA.
| | - Rita Leite
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Radek Bukowski
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Heping Zhang
- Collaborative Center for Statistics in Science, Yale University School of Public Health, New Haven, CT
| | - Michael Varner
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT
| | - William W Andrews
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - George R Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - John Ilekis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Uma M Reddy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Hao Huang
- Collaborative Center for Statistics in Science, Yale University School of Public Health, New Haven, CT
| | - Yoel Sadovsky
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Ian A Blair
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Joseph Biggio
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
2
|
Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, Pacora P, Chaiworapongsa T, Panaitescu B, Tirosh D, Gomez-Lopez N, Draghici S, Hassan SS, Erez O. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS One 2019; 14:e0217273. [PMID: 31163045 PMCID: PMC6548389 DOI: 10.1371/journal.pone.0217273] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. STUDY DESIGN This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8-16, 16.1-22, 22.1-28, 28.1-32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. RESULTS We found that 1) multi-protein models at 16.1-22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1-28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1-32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1-28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1-22 weeks; 87% versus 81% at 22.1-28 weeks; and 90% versus 85% at 28.1-32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1-22 weeks). CONCLUSION We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease and in those with a severe phenotype.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Clinic, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Dereje W. Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dan Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sorin Draghici
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Valent D, Yeste N, Hernández-Castellano LE, Arroyo L, Wu W, García-Contreras C, Vázquez-Gómez M, González-Bulnes A, Bendixen E, Bassols A. SWATH-MS quantitative proteomic investigation of intrauterine growth restriction in a porcine model reveals sex differences in hippocampus development. J Proteomics 2019; 204:103391. [PMID: 31129268 DOI: 10.1016/j.jprot.2019.103391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Intrauterine growth restriction (IUGR) is characterized by reduced growth and weight of the foetus, mainly due to the lack of nutrients and oxygen. Animals affected by IUGR show changes in specific brain areas and several neuronal processes. Female offspring affected by IUGR show increased survival and development compared to males. The objective of this study was to analyse changes in the hippocampus proteome in male and female piglets affected by IUGR. Seven pregnant Iberian sows were fed from Day 35 of pregnancy onwards at 50% of their requirements. At Day 100 of pregnancy, foetuses were obtained and classified by sex and weight, as mild IUGR (Normal Body Weight) versus severe IUGR (Low Body Weight). Hippocampi were dissected and the proteomes analysed by SWATH-MS DIA. In this study, 1497 proteins were identified of which 260 were quantitatively analysed. All differential proteins were more abundant in females versus males and were involved in protein synthesis, neuronal development, metabolism, antiapoptotic signalling and vesicular transport. Our findings support that female foetuses tolerate nutrient limitation better than males, especially under mild IUGR. Under severe IUGR, females still seems to maintain normal lipid metabolism and antiapoptotic signalling, which may be related to the increased female survival. SIGNIFICANCE: In the last years, proteomics have been used to evidence differences related to sex in non-reproductive organs. Intrauterine Growth Restriction (IUGR) can affect female and male offspring differently. Female offspring has stronger protective strategies compared to males, enhancing growth and postnatal survival. Most studies regarding this issue have focused on metabolic organs (i.e. liver). However, the predominance of neurodevelopmental disorders in males suggests that the central nervous system in female offspring adapt better to nutritional stress conditions than that of males. Based on the differential protein expression in hippocampal samples, our work demonstrates that female foetuses indeed adapt better to IUGR than males, especially under mild IUGR conditions. In severe IUGR conditions, differences between males and females were not so evident, but even in this case, the remaining differences suggest increased survival in females than in males.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lorenzo E Hernández-Castellano
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Wei Wu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Marta Vázquez-Gómez
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Comparative Physiology Group, INIA, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
4
|
Vasani A, Kumar MS. Advances in the proteomics of amniotic fluid to detect biomarkers for chromosomal abnormalities and fetomaternal complications during pregnancy. Expert Rev Proteomics 2019; 16:277-286. [PMID: 30722712 DOI: 10.1080/14789450.2019.1578213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Amniotic fluid (AF) is a dynamic and complex mixture that reflects the physiological condition of developing fetus. In the last decade, proteomic analysis of AF for 16-18 weeks normal pregnancy has been done for the composition and functions of this fluid. Other body fluids such as urine, sweat, tears, etc. are being used for diagnosis of disease, but an insight into protein biomarkers of amniotic fluid can save the fetus and mother from future complications. Areas covered: We have covered the proteomics of amniotic fluid done since 2000, in order to strengthen the establishment of these techniques as a recognized diagnostic tool in the field. After classifying the diseases based on chromosomal aneuploidies, gestational changes, and inflammation caused during pregnancy; we have focused on amniotic fluid to detect various complications during and post pregnancy and its effect on the fetomaternal relationship. Expert comment: The main protein biomarkers responsible for various syndromes, diseases, and complications have been summarized. Major proteins identified for gestational conditions are IGFBP-1, fibrinogen, neutrophil defensins like calgranulins A and C, cathelicidin, APOA1, TRFE, etc. Validation of particular technique and establishing a single standardized biomarker for the diagnosis to avoid any overlapping for different diseases is required. After certain improvements, proteomics approach can be considered for diagnosis of diseases associated with fetal-maternal health.
Collapse
Affiliation(s)
- Aayushi Vasani
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , V.L. Mehta Road, Vile Parle west, Mumbai - 400056 , India
| | - Maushmi S Kumar
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , V.L. Mehta Road, Vile Parle west, Mumbai - 400056 , India
| |
Collapse
|
5
|
Romero R, Erez O, Maymon E, Chaemsaithong P, Xu Z, Pacora P, Chaiworapongsa T, Done B, Hassan SS, Tarca AL. The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study. Am J Obstet Gynecol 2017; 217:67.e1-67.e21. [PMID: 28263753 PMCID: PMC5813489 DOI: 10.1016/j.ajog.2017.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Pregnancy is accompanied by dramatic physiological changes in maternal plasma proteins. Characterization of the maternal plasma proteome in normal pregnancy is an essential step for understanding changes to predict pregnancy outcome. The objective of this study was to describe maternal plasma proteins that change in abundance with advancing gestational age and determine biological processes that are perturbed in normal pregnancy. STUDY DESIGN A longitudinal study included 43 normal pregnancies that had a term delivery of an infant who was appropriate for gestational age without maternal or neonatal complications. For each pregnancy, 3 to 6 maternal plasma samples (median, 5) were profiled to measure the abundance of 1125 proteins using multiplex assays. Linear mixed-effects models with polynomial splines were used to model protein abundance as a function of gestational age, and the significance of the association was inferred via likelihood ratio tests. Proteins considered to be significantly changed were defined as having the following: (1) >1.5-fold change between 8 and 40 weeks of gestation; and (2) a false discovery rate-adjusted value of P < .1. Gene ontology enrichment analysis was used to identify biological processes overrepresented among the proteins that changed with advancing gestation. RESULTS The following results were found: (1) Ten percent (112 of 1125) of the profiled proteins changed in abundance as a function of gestational age; (2) of the 1125 proteins analyzed, glypican-3, sialic acid-binding immunoglobulin-type lectin-6, placental growth factor, C-C motif-28, carbonic anhydrase 6, prolactin, interleukin-1 receptor 4, dual-specificity mitogen-activated protein kinase 4, and pregnancy-associated plasma protein-A had more than a 5-fold change in abundance across gestation (these 9 proteins are known to be involved in a wide range of both physiological and pathological processes, such as growth regulation, embryogenesis, angiogenesis immunoregulation, inflammation etc); and (3) biological processes associated with protein changes in normal pregnancy included defense response, defense response to bacteria, proteolysis, and leukocyte migration (false discovery rate, 10%). CONCLUSION The plasma proteome of normal pregnancy demonstrates dramatic changes in both the magnitude of changes and the fraction of the proteins involved. Such information is important to understand the physiology of pregnancy and the development of biomarkers to differentiate normal vs abnormal pregnancy and determine the response to interventions.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI.
| | - Offer Erez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eli Maymon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Percy Pacora
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bogdan Done
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Adi L Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI.
| |
Collapse
|
6
|
Williams CJ, Chu A, Jefferson WN, Casero D, Sudhakar D, Khurana N, Hogue CP, Aryasomayajula C, Patel P, Sullivan P, Padilla-Banks E, Mohandessi S, Janzen C, Wadehra M. Epithelial membrane protein 2 (EMP2) deficiency alters placental angiogenesis, mimicking features of human placental insufficiency. J Pathol 2017; 242:246-259. [PMID: 28295343 DOI: 10.1002/path.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 01/21/2023]
Abstract
Epithelial membrane protein-2 (EMP2) is a tetraspan protein predicted to regulate placental development. Highly expressed in secretory endometrium and trophectoderm cells, previous studies suggest that it may regulate implantation by orchestrating the surface expression of integrins and other membrane proteins. In order to test the role of EMP2 in pregnancy, mice lacking EMP2 (Emp2-/- ) were generated. Emp2-/- females are fertile but have reduced litter sizes when carrying Emp2-/- but not Emp2+/- fetuses. Placentas of Emp2-/- fetuses exhibit dysregulation in pathways related to neoangiogenesis, coagulation, and oxidative stress, and have increased fibrin deposition and altered vasculature. Given that these findings often occur due to placental insufficiency resulting in an oxygen-poor environment, the expression of hypoxia-inducible factor-1 alpha (HIF-1α) was examined. Placentas from Emp2-/- fetuses had increased total HIF-1α expression in large part through an increase in uterine NK (uNK) cells, demonstrating a unique interplay between uNK cells and trophoblasts modulated through EMP2. To determine if these results translated to human pregnancy, placentas from normal, term deliveries or those complicated by placental insufficiency resulting in intrauterine growth restriction (IUGR) were stained for EMP2. EMP2 was significantly reduced in both villous and extravillous trophoblast populations in IUGR placentas. Experiments in vitro using human trophoblast cells lines indicate that EMP2 modulates angiogenesis by altering HIF-1α expression. Our results reveal a novel role for EMP2 in regulating trophoblast function and vascular development in mice and humans, and suggest that it may be a new biomarker for placental insufficiency. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Alison Chu
- Department of Pediatrics and Neonatology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Deepthi Sudhakar
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Nevil Khurana
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Claire P Hogue
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Chinmayi Aryasomayajula
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Priya Patel
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Peggy Sullivan
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elizabeth Padilla-Banks
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Shabnam Mohandessi
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Carla Janzen
- Obstetrics and Gynecology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Newnham JP, Kemp MW, White SW, Arrese CA, Hart RJ, Keelan JA. Applying Precision Public Health to Prevent Preterm Birth. Front Public Health 2017; 5:66. [PMID: 28421178 PMCID: PMC5379772 DOI: 10.3389/fpubh.2017.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth (PTB) is one of the major health-care challenges of our time. Being born too early is associated with major risks to the child with potential for serious consequences in terms of life-long disability and health-care costs. Discovering how to prevent PTB needs to be one of our greatest priorities. Recent advances have provided hope that a percentage of cases known to be related to risk factors may be amenable to prevention; but the majority of cases remain of unknown cause, and there is little chance of prevention. Applying the principle of precision public health may offer opportunities previously unavailable. Presented in this article are ideas that may improve our abilities in the fields of studying the effects of migration and of populations in transition, public health programs, tobacco control, routine measurement of length of the cervix in mid-pregnancy by ultrasound imaging, prevention of non-medically indicated late PTB, identification of pregnant women for whom treatment of vaginal infection may be of benefit, and screening by genetics and other “omics.” Opening new research in these fields, and viewing these clinical problems through a prism of precision public health, may produce benefits that will affect the lives of large numbers of people.
Collapse
Affiliation(s)
- John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia.,Department of Maternal Fetal Medicine, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Scott W White
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia.,Department of Maternal Fetal Medicine, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Catherine A Arrese
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Roger J Hart
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Jeffrey A Keelan
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
8
|
Roverso M, Brioschi M, Banfi C, Visentin S, Burlina S, Seraglia R, Traldi P, Lapolla A. A preliminary study on human placental tissue impaired by gestational diabetes: a comparison of gel-based versus gel-free proteomics approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:71-82. [PMID: 27419900 DOI: 10.1255/ejms.1412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gestational diabetes (GDM) is the most common complication of pregnancy and it is associated with maternal and fetal short- and long-term consequences. GDM modifies placental structure and function, but many of the underlying mechanisms are still unclear. The aim of this study is to develop and compare two different methods, based respectively on gel-based and gel-free proteomics, in order to investigate the placental proteome in the absence or in the presence of GDM and to identify, through a comparative approach, possible changes in protein expression due to the GDM condition. Placenta homogenates obtained by pooling six control samples and six samples from GDM pregnant women were analyzed by two-dimensional (2D) electrophoresis coupled with mass spectrometry [nano-liquid chromatography (nano-LC) tandem mass spectrometry (MS/MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)] and by a label-free mass spectrometry method based on LC-MS(E). The gel-based approach highlights 13 over-expressed proteins and 16 under-expressed proteins, while the label-free method shows the over- expression of 10 proteins and the under-expression of nine proteins. As regards 2D gel electrophoresis, a comparison between two different protein identification methods, based respectively on nLC-electrospray ionization-MS/MS and MALDI-MS/MS, was performed taking into consideration the sequence coverage, the MASCOT score and the exponentially modified protein abundance index. The analysis of the complex proteome through an integrated strategy revealed that the quantitative gel-free and label-free MS approach might be suitable to identify candidate markers of GDM.
Collapse
Affiliation(s)
- Marco Roverso
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy. Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Maura Brioschi
- Centro Cardiologico Monzino I.R.C.C.S, Via Parea 4, Milan, Italy.
| | - Cristina Banfi
- Centro Cardiologico Monzino I.R.C.C.S, Via Parea 4, Milan, Italy.
| | - Silvia Visentin
- Department of Woman's and Child's Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | - Silvia Burlina
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | | - Annunziata Lapolla
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|