1
|
Fikry H, Saleh LA, Mohammed OA, Doghish AS, Elsakka EGE, Hashish AA, Alfaifi J, Alamri MMS, Adam MIE, Atti MA, Mahmoud FA, Alkhalek HAA. Agmatine alleviates diabetic-induced hyposalivation in rats: A histological and biochemical study. Life Sci 2024; 359:123220. [PMID: 39505296 DOI: 10.1016/j.lfs.2024.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Diabetic patients commonly experience hyposalivation, which can cause challenges with eating, swallowing, dry mouth, and speaking. It also raises the likelihood of developing periodontal disease. This study aimed to evaluate if agmatine could improve the rate of salivation in rats with hyposalivation induced by streptozotocin (STZ). Five groups of Wistar rats were utilized with 10 animals in each group. They were classified as follows; Negative control group (G1), agmatine (G2) group, and Nicotinamide (NA)-STZ (G3) group; received a single intraperitoneal dose of 65 mg/kg of STZ after NA injection. NA was administered to protect residual β cells and enhance their insulin secretion; NA-STZ + Metformin (G4) Metformin-treated diabetic group; at day 10 diabetic rats received 50mg/kg orally for 28 days, and NA-STZ + Agmatine (G5) at day 10 diabetic rats received a daily intraperitoneal dose of 300 mg/kg Agmatine for 28 days. The salivary flow rate was assessed weekly. Then, the animals were euthanized, both parotid (PG) and submandibular (SMG) salivary glands were dissected, and the following parameters were assessed; salivary glands' histopathology, aquaporin 5 (AQP5), caspase-3, E-cadherin expressions, inflammatory markers and finally, salivary glands' oxidative stress status. Agmatine has alleviated the salivary glands' dysfunction in STZ-induced diabetic rats. It normalized diabetes mellitus-associated salivary glands' abnormalities including histopathological abnormalities, decreased AQP5 and E-cadherin expressions, increased caspase-3 expression, and oxidative stress and inflammatory parameters. Agmatine alleviates diabetes mellitus-associated hyposalivation. It can promote PGs and SMGs function through its histological and AQP5 expression improvements.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Osama A Mohammed
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Abdullah A Hashish
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed A Atti
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyiah, Riyadh 13713, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
2
|
Rastmanesh R. Aquaporin5-Targeted Treatment for Dry Eye Through Bioactive Compounds and Gut Microbiota. J Ocul Pharmacol Ther 2021; 37:464-471. [PMID: 34328795 DOI: 10.1089/jop.2021.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dry eye and dry mouth are the principal sources of morbidity for patients with Sjögren's syndrome (SS). There are few effective treatments, particularly systemic ones. Targeting aquaprin-5 (AQP5)-mediated tear secretion has been tested as a novel ancillary strategy and has proved promising. Patients have a great interest in using complementary medicine, including nutraceuticals and bioactive compounds to alleviate their symptoms. Potential mechanisms by which phytocompounds and bioactive compounds may benefit SS ocular and mouth symptoms through modulation of AQP5 activity are presented within this review. Supplementation with prebiotics (such as polyphenols with high bioavailability) in SS patients with lower Firmicutes/Bacteroides (F/B) community ratio phenotype, through administration of butyrate-producing diets, is proposed as ancillary strategy for dry eye and mouth. The potential use of natural bioactive compounds to treat dry eye could also apply to dry mouth occurring in the context of aging and SS. This novel hypothesis could have implications with respect to planning a successful dietary regimen for achieving and maintaining a normal gut microbiota in SS patients. This regimen would include augmenting butyrate-producing foodstuffs and/or polyphenol-rich syrups, and high amounts of some specific probiotic-rich foodstuffs such as yogurt, soy yogurt, or as probiotic supplements. There are applications for pharmaceutical and nutraceutical products aiming to relieve dry eye and mouth.
Collapse
|
3
|
Fouani M, Basset CA, Jurjus AR, Leone LG, Tomasello G, Leone A. Salivary gland proteins alterations in the diabetic milieu. J Mol Histol 2021; 52:893-904. [PMID: 34212290 PMCID: PMC8487876 DOI: 10.1007/s10735-021-09999-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Salivary glands are considered the chief exocrine glands of the mouth and physiologically contribute to the maintenance of the homeostasis of the oral cavity. They consist of the parotid, submandibular and sublingual glands, which come in pairs and are collectively called the major glands, and the minor glands, which are much smaller and are dispersed throughout the buccal cavity. Salivary glands are distinguished by their size, amount of saliva secretion and their location in the oral cavity. Salivary glands pathophysiology has been a subject of interest in various worldwide metabolic disorders, including diabetes mellitus. Diabetes mellitus (DM), a global health concern, with a pathological imprint involved in vasculature, promotes microvascular and macrovascular complications among which periodontitis ranks sixth. Indeed, DM has also been directly associated with oral health lesions. Specifically, salivary glands in the context of diabetes have been a focal point of study and emphasis in the research field. There is evidence that relates salivary secretion content and diabetes progression. In this review, we present all the reported evidence of the deregulation of specific salivary proteins associated with the progression of diabetes in parallel with changes in salivary gland morphology, cellular architecture, and salivary secretion and composition more generally.
Collapse
Affiliation(s)
- Malak Fouani
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Charbel A Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Abdo R Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Giovanni Tomasello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy.
| |
Collapse
|
4
|
Lee HY, Gu M, Cheng J, Suh JW, Chae HJ. Ixeris dentata and Lactobacillus gasseri Extracts Improve Salivary Secretion Capability in Diabetes-Associated Dry Mouth Rat Model. Nutrients 2020; 12:nu12051331. [PMID: 32392818 PMCID: PMC7284355 DOI: 10.3390/nu12051331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Dry mouth, hyposalivation, or xerostomia is a significant problem in diabetic patients; however, there has been no way to relieve these symptoms. This study’s aim was to evaluate the effects of Ixeris dentata (IXD) in combination with lactobacillus extract on the salivation rate in diabetes-induced dry mouth, and its mechanism was also investigated. In the streptozotocin (STZ)-induced diabetes model, the dry mouth condition was established as a model. Here, rats were treated with water or IXD through the sublingual spray, and subsequently treated with or without a spray of lactobacillus extract. In diabetes condition, the salivary flow rate, amylase activity, and aquaporin-5 and Na+/H+ exchanger (NHE-1) expressions were markedly decreased, whereas they were more significantly recovered in the sequential treatment of IXD-lactobacillus extract than in each single treatment. Furthermore, oxidative stress and its related ER stress response were especially regulated in the IXD/lactobacillus extract condition, where the following anti-oxidative enzymes, glutathione assay (GSH: GSSG) ratio, superoxide dismutase (SOD), and glutathione peroxidase (GPx), were involved. This study suggests that the combination of IXD and lactobacillus would be a potential alternative medicine against diabetes-induced hyposalivation and xerostomia.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk 561-180, Korea;
| | - Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Korea;
| | - Jinhua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi 17058, Korea; (J.C.); (J.-W.S.)
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi 17058, Korea; (J.C.); (J.-W.S.)
| | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk 561-180, Korea;
- Correspondence: ; Tel.: 82-63-270-3092
| |
Collapse
|
5
|
Jaiboonma A, Kaokaen P, Chaicharoenaudomrung N, Kunhorm P, Janebodin K, Noisa P, Jitprasertwong P. Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells. Int J Med Sci 2020; 17:1733-1743. [PMID: 32714076 PMCID: PMC7378660 DOI: 10.7150/ijms.46707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Xerostomia (dry mouth) is a significant age-related condition. Meanwhile, cordycepin, the natural therapeutic agent, has demonstrated an anti-aging effect. Therefore, the present study aimed to investigate the preventive effects of cordycepin on secretory function in an in vitro model of hydrogen peroxide (H2O2)-induced salivary hypofunction. After being exposed to H2O2, human submandibular gland (HSG) cells were treated with various concentrations of cordycepin (6.25-50 µM) for 24, 48, and 72h. To evaluate cell proliferation and reactive oxygen species (ROS) generation, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and 2, 7'-dichlorodihydrofluorescein diacetate assays were performed. The amylase activity was kinetically measured by 2-chloro-p-nitrophenol linked with maltotrioside. The expression of salivary, antioxidant and apoptotic markers at mRNA and protein levels were performed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence analysis, respectively. We demonstrated that cordycepin (6.25-25 µM) contributed to significant increases in expression of the salivary marker genes, alpha-amylase 1 (AMY1A) and aquaporin-5 (AQP5), and in amylase secretion without changes in cell viability. Under oxidative stress, HSG cells showed remarkable dysfunction. Cordycepin rescued the protective effects partially by decreasing ROS generation and restoring the expression of the salivary proteins, AMY and AQP5 via anti-oxidant and anti-apoptotic activity. In addition, the amount of amylase that was secreted from HSG cells cultured in cordycepin was increased. In conclusion, cordycepin demonstrated a protective effect on H2O2 -induced HSG cells by decreasing ROS generation and upregulating the salivary function markers, AMY1A and AQP5, at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- Atchara Jaiboonma
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Palakorn Kaokaen
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Paiboon Jitprasertwong
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
6
|
Flieger J, Kawka J, Tatarczak-Michalewska M. Levels of the Thiocyanate in the Saliva of Tobacco Smokers in Comparison to e-Cigarette Smokers and Nonsmokers Measured by HPLC on a Phosphatidylcholine Column. Molecules 2019; 24:E3790. [PMID: 31640293 PMCID: PMC6832790 DOI: 10.3390/molecules24203790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to estimate the thiocyanate levels in saliva of cigarette smokers in comparison to e-cigarette smokers and nonsmokers. To improve our understanding of the influence of smoking on the oral level of thiocyanate, we conducted an assessment of human saliva, in 24 individuals (eight tobacco smokers, eight e-cigarette smokers, and eight nonsmokers). High-Performance Liquid Chromatography with ultraviolet detection (HPLC-UV) using a unique phosphatidylcholine column was applied in this assay. Thiocyanate ion was detected directly by its absorbance at 210 nm. The method presents a new application of the IAM (Immobilized Artificial Membrane) column for quantification of inorganic anions. The whole process meets the criteria of green chemistry because it was carried out without the use of organic solvents. For compensating matrix effects, an eight-point standard addition protocol was used to quantify the thiocyanate level in saliva samples. The calibration graphs were linear in the range of 5-100 mg L-1 with a correlation coefficient higher than 0.99. The thiocyanate concentrations in the saliva of tobacco smokers, e-cigarette smokers, and nonsmokers were found in the range of 121.25-187.54 mg L-1, 121.24-244.11 mg L-1, 33.03-79.49 mg L-1, respectively. The present study indicates an obvious statistically significant elevation in salivary thiocyanate level in tobacco smokers in comparison to nonsmokers. The phosphatidylcholine-based stationary phase proved to be suitable for the detection and quantification of the thiocyanate ion. The salivary thiocyanate levels in e-cigarette smokers were not significantly different in comparison to tobacco smokers but higher if compared to nonsmokers. The criterion for statistical significance was p < 0.05.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland.
| | - Justyna Kawka
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland.
| | | |
Collapse
|
7
|
Potential Application of Ixeris dentata in the Prevention and Treatment of Aging-Induced Dry Mouth. Nutrients 2018; 10:nu10121989. [PMID: 30558302 PMCID: PMC6316753 DOI: 10.3390/nu10121989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Dry mouth is a common complaint among the elderly population. The aim of this study was to investigate the effect of Ixeris dentata (IXD) extract on aging-induced dry mouth. We used young (two months) and aged (20 months) SD rats in our study. Using water as the vehicle, IXD extract (25, 50, and 100 mg/kg) was given via oral gavage to the young and aged rats for eight weeks. We found that the salivary flow rate relative to the submandibular gland weight was differently influenced by IXD extract treatment. IXD extract augmented the submandibular gland acinar cells, which are depleted during aging. In addition, the decreased salivary alpha-amylase, inositol triphosphate receptor, and aquaporin-5 in the aging rats were upregulated by IXD treatment. Free radical-induced oxidative stress in the aging rats was also alleviated in the IXD-treated group. The formation of high molecular weight complexes of protein disulfide isomerase, decreased expression of an ER chaperone (GRP78), and increased ER stress response (ATF-4, CHOP and p-JNK) in aging rats was regulated with IXD treatment, and eventually increased salivary secretions from the aging submandibular glands. These are the first data to suggest that IXD extract might ameliorate aging-associated oral dryness by regulating the ER environment.
Collapse
|
8
|
Bhattarai KR, Lee HY, Kim SH, Kim HR, Chae HJ. Ixeris dentata Extract Increases Salivary Secretion through the Regulation of Endoplasmic Reticulum Stress in a Diabetes-Induced Xerostomia Rat Model. Int J Mol Sci 2018; 19:ijms19041059. [PMID: 29614832 PMCID: PMC5979381 DOI: 10.3390/ijms19041059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the molecular mechanism of diabetes mellitus (DM)-induced dry mouth and an application of natural products from Ixeris dentata (IXD), a recently suggested regulator of amylase secretion in salivary cells. Vehicle-treated or diabetic rats were orally treated with either water or an IXD extract for 10 days to observe the effect on salivary flow. We found that the IXD extract increased aquaporin 5 (AQP5) and alpha-amylase protein expression in the submandibular gland along with salivary flow rate. Similarly, the IXD extract and its purified compound increased amylase secretion in high glucose-exposed human salivary gland cells. Furthermore, increased endoplasmic reticulum stress response in the submandibular gland of diabetic rats was inhibited by treatment with the IXD extract, suggesting that IXD extract treatment improves the ER environment by increasing the protein folding capacity. Thus, pharmacological treatment with the IXD extract is suggested to relieve DM-induced dry mouth symptoms.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju 54896, Korea.
| | - Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju 54896, Korea.
| | - Seung-Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 406-840, Korea.
| | - Hyung-Ryong Kim
- Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
9
|
Bhattarai KR, Junjappa R, Handigund M, Kim HR, Chae HJ. The imprint of salivary secretion in autoimmune disorders and related pathological conditions. Autoimmun Rev 2018; 17:376-390. [DOI: 10.1016/j.autrev.2017.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
10
|
Bhattarai KR, Kim HR, Chae HJ. Compliance with Saliva Collection Protocol in Healthy Volunteers: Strategies for Managing Risk and Errors. Int J Med Sci 2018; 15:823-831. [PMID: 30008593 PMCID: PMC6036086 DOI: 10.7150/ijms.25146] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/14/2018] [Indexed: 12/25/2022] Open
Abstract
Salivary bioscience technologies such as electrophoresis are widely applied for diagnosing systemic health status. Diagnosis using a saliva sample has emerged as a preferred technique since the sample is easy to collect and the method is inexpensive and non-invasive. Salivary diagnostics have even been identified as potential substitutes for serum protein biomarkers. However, the optimal protocol for collecting saliva has not yet been established. In many scientific settings, such as randomized controlled trials, sampling and statistical errors often occur when handling samples from healthy volunteers. These errors can be due to the psychological behavior of the volunteers, subject nonadherence, questionnaire characteristics, collection methods, and/or sample processing. The purpose of the review presented here is to outline the strategies for managing the risk factors and to minimize the sampling errors during saliva collection in healthy volunteers.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|