1
|
Elkoshi Z. TGF-β, IL-1β, IL-6 levels and TGF-β/Smad pathway reactivity regulate the link between allergic diseases, cancer risk, and metabolic dysregulations. Front Immunol 2024; 15:1371753. [PMID: 38629073 PMCID: PMC11019030 DOI: 10.3389/fimmu.2024.1371753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The risk of cancer is higher in patients with asthma compared to those with allergic rhinitis for many types of cancer, except for certain cancers where a contrasting pattern is observed. This study offers a potential explanation for these observations, proposing that the premalignant levels of circulating transforming growth factor-β (TGF-β), IL-1β, and IL-6 as well as the reactivity of the TGF-β/Smad signaling pathway at the specific cancer site, are crucial factors contributing to the observed disparities. Circulating TGF-β, IL- β and IL-6 levels also help clarify why asthma is positively associated with obesity, Type 2 diabetes, hypertension, and insulin resistance, whereas allergic rhinitis is negatively linked to these conditions. Furthermore, TGF-β/Smad pathway reactivity explains the dual impact of obesity, increasing the risk of certain types of cancer while offering protection against other types of cancer. It is suggested that the association of asthma with cancer and metabolic dysregulations is primarily linked to the subtype of neutrophilic asthma. A binary classification of TGF-β activity as either high (in the presence of IL-1β and IL-6) or low (in the presence or absence of IL-1β and IL-6) is proposed to differentiate between allergy patients prone to cancer and metabolic dysregulations and those less prone. Glycolysis and oxidative phosphorylation, the two major metabolic pathways utilized by cells for energy exploitation, potentially underlie this dichotomous classification by reprogramming metabolic pathways in immune cells.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
2
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
3
|
Ghanem P, Murray JC, Marrone KA, Scott SC, Feliciano JL, Lam VK, Hann CL, Ettinger DS, Levy BP, Forde PM, Shah AA, Mecoli C, Brahmer J, Cappelli LC. Improved lung cancer clinical outcomes in patients with autoimmune rheumatic diseases. RMD Open 2023; 9:e003471. [PMID: 37914179 PMCID: PMC10619011 DOI: 10.1136/rmdopen-2023-003471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE Concomitant autoimmune rheumatic diseases (ARD) can add morbidity and complicate treatment decisions for patients with lung cancer. We evaluated the tumour characteristics at diagnosis and clinical outcomes in lung cancer patients with or without ARD. METHODS This retrospective cohort study included 10 963 patients with lung cancer, treated at Johns Hopkins. Clinical data including tumour characteristics and outcomes were extracted from the cancer registry. Data on patients' history of 20 ARD were extracted from the electronic medical record. Logistic regression was used to compare tumour characteristics between those with and without ARD; Kaplan-Meier curves and Cox proportional hazards models were performed to compare survival outcomes. RESULTS ARD was present in 3.6% of patients (n=454). The mean age at diagnosis was 69 (SD 10) and 68 (SD 12) in patients with and without ARD (p=0.02). Female sex and smoking history were significantly associated with a history of ARD (OR: 1.75, OR: 1.46, p<0.05). Patients with ARD were more likely to be diagnosed with stage 1 lung cancer (36.8% vs 26.9%, p<0.001) and with smaller tumour size (OR: 0.76, p=0.01), controlling for sex, race and histology. Notably, lung cancer patients with ARD had a significantly prolonged median overall survival (OS) (7.11 years vs 1.7 years, p<0.001), independent of stage. CONCLUSION Patients with ARD and lung cancer had better OS compared with their counterparts, independent of cancer stage and treatments and were less likely to have advanced stage lung cancer at diagnosis. Additional studies are needed to investigate the differential immunological anti-tumour immune activity and genomic variations in patients with and without ARD.
Collapse
Affiliation(s)
- Paola Ghanem
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Murray
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristen A Marrone
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan C Scott
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Josephine L Feliciano
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent K Lam
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L Hann
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David S Ettinger
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin P Levy
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrick M Forde
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ami A Shah
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Mecoli
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie Brahmer
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura C Cappelli
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Elkoshi Z. The Contrasting Seasonality Patterns of Some Cancer-Types and Herpes Zoster Can Be Explained by a Binary Classification of Immunological Reactions. J Inflamm Res 2022; 15:6761-6771. [PMID: 36544697 PMCID: PMC9762256 DOI: 10.2147/jir.s392082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
A binary classification of the pathogenic immune reactions as anti-inflammatory high-Treg reactions or pro-inflammatory low-Treg reactions explains both the relatively low incidence rate of several types of cancer, and the relatively high incidence rate of herpes zoster cases diagnosed in the summer compared to cases diagnosed in the winter (in regions with temperate climate). This binary model also elucidates the longer survival of cancer patients diagnosed during the summer compared to these diagnosed in the winter. The three key elements of this explanation are: (a) the effect of sunlight on Treg production; (b) the evolvement of cancer from a low-Treg condition at early stage, to a high-Treg condition at advanced stage, and (c) the evolvement of herpes zoster from a high-Treg condition at pre-exudative stage to a low-Treg condition at acute exudative stage. A significant proportion of indolent tumors at the time of diagnosis (>20%) is a prerequisite for a beneficial effect of sunlight on cancer incidence rate and prognosis. This prerequisite restricts the beneficial effect of diagnosis during summer to certain types of cancer. Clinical implication: the prognosis of early stage tumors may be improved by a course of corticosteroid (or other immunosuppressant) treatment.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel,Correspondence: Zeev Elkoshi, Email
| |
Collapse
|
6
|
Elkoshi Z. Cancer and Autoimmune Diseases: A Tale of Two Immunological Opposites? Front Immunol 2022; 13:821598. [PMID: 35145524 PMCID: PMC8822211 DOI: 10.3389/fimmu.2022.821598] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
The present article compares, side-by-side, cancer and autoimmune diseases in terms of innate and adaptive immune cells involvement, MHC Class I and Class II expression, TGFβ effect, immune modulating drugs effect and the effect of reactive oxygen species. The change in the inflammatory immune reaction during the progress of cancer and the effect of this change on the comorbidity of autoimmune diseases and cancer are discussed. The similar inflammatory properties of autoimmune diseases and early cancer, and the contrasting inflammatory properties of autoimmune diseases and advanced cancer elucidate the increased incidence of many types of cancer in patients with pre-existing autoimmune diseases and the decreased cancer-specific mortality of these patients. Stage-dependent effects of reactive oxygen-species on tumor proliferation are an additional probable cause for these epidemiological observations. The relationship: {standardized incidence ratio (SIR)} > {cancer-specific hazard ratio (HR)} for cancer patients with a history of autoimmune diseases is substantiated and rationalized.
Collapse
|
7
|
Elkoshi Z. The Binary Model of Chronic Diseases Applied to COVID-19. Front Immunol 2021; 12:716084. [PMID: 34539649 PMCID: PMC8446604 DOI: 10.3389/fimmu.2021.716084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
A binary model for the classification of chronic diseases has formerly been proposed. The model classifies chronic diseases as “high Treg” or “low Treg” diseases according to the extent of regulatory T cells (Treg) activity (frequency or function) observed. The present paper applies this model to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The model correctly predicts the efficacy or inefficacy of several immune-modulating drugs in the treatment of severe coronavirus disease 2019 (COVID-19) disease. It also correctly predicts the class of pathogens mostly associated with SARS-CoV-2 infection. The clinical implications are the following: (a) any search for new immune-modulating drugs for the treatment of COVID-19 should exclude candidates that do not induce “high Treg” immune reaction or those that do not spare CD8+ T cells; (b) immune-modulating drugs, which are effective against SARS-CoV-2, may not be effective against any variant of the virus that does not induce “low Treg” reaction; (c) any immune-modulating drug, which is effective in treating COVID-19, will also alleviate most coinfections; and (d) severe COVID-19 patients should avoid contact with carriers of “low Treg” pathogens.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
8
|
Elkoshi Z. The Binary Classification of Protein Kinases. J Inflamm Res 2021; 14:929-947. [PMID: 33776467 PMCID: PMC7988341 DOI: 10.2147/jir.s303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication a binary model for chronic diseases classification has been proposed. According to the model, chronic diseases were classified as “high Treg” or “low Treg” diseases, depending on whether the immune response is anti- or pro-inflammatory and assuming that regulatory T cells are major determinants of the response. It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low Treg”. This paper proposes a molecular cause for this binary response. The mechanism proposed depends on the effect of protein kinases on the immune system. Thus, protein kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive “high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) activity. Analysis of literature data reveals that the two classes of kinases display distinctive properties relating to their interactions with pathogens and environmental factors. Pathogens that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are associated with “high Treg” pathogens while those diseases driven by PIKs are associated with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequencies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corresponding two classes of protein kinase inhibitors are mutually exclusive in terms of their approved therapeutic indications. There is no protein kinase inhibitor that is approved for the treatment of both autoimmune diseases and “high Treg” cancers. Although there are exceptions to the conclusions presented above, these conclusions are supported by the great bulk of published data. It therefore seems that the binary division of protein kinases is a useful tool for elucidating (at the molecular level) many distinctive properties of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
9
|
Elkoshi Z. "High Treg" Inflammations Promote (Most) Non-Hematologic Cancers While "Low Treg" Inflammations Promote Lymphoid Cancers. J Inflamm Res 2020; 13:209-221. [PMID: 32547153 PMCID: PMC7247720 DOI: 10.2147/jir.s249384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication, a binary classification of chronic diseases has been proposed. Chronic diseases were classified as “high Treg” or “low Treg” diseases depending on whether the pro-inflammatory or the anti-inflammatory arms of the immune response are deficient. The present work uses this model to analyze the interplay between cancer and the immune system, based on published literature. The work leans upon the etiology of alcohol and tobacco-related malignancies. The main conclusions are: triggers of specific “high Treg” immune reaction promote most non-hematologic cancers, whereas triggers of “low Treg” immune reaction promote lymphomas. The opposite is also true: triggers of specific “high Treg” immune reaction suppress lymphoma, whereas triggers of “low Treg” immune reaction suppress non-hematologic cancers. Both lymphoma and autoimmune diseases are “low Treg” conditions. For this reason, both are promoted by the same panel of “low Treg” bacteria and parasites and are inhibited by “high Treg” triggers. For example, alcohol consumption, a “high Treg” trigger, protects against lymphoma and autoimmune hypothyroidism. In addition, the same immune-modulatory drugs are effective in the treatment of both lymphoma and autoimmune diseases. Like other cancers, lymphoma transforms from a “low Treg” type at early stage of the disease into a “high Treg” type at advanced stages. However, lymphoma is distinguished from most other cancers by the length of time it dwells at an indolent “low Treg” state (many years) before lymphoma cells sensitivity to transforming growth factor-beta is impaired. This impairment stimulates the switch from “low Treg” into “high Treg” response and results in immune escape. The application of this analysis to the pharmacological activity of checkpoint inhibitors forecasts that checkpoint inhibitors would not be effective in low-grade, indolent lymphomas. As of now, checkpoint inhibitors are approved for the treatment of advanced lymphoma only.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|