1
|
Zhao H, Li W, Liu J, Li X, Ji H, Hu M, Li M. Label-Free Quantitative Proteomics Analysis of COVID-19 Vaccines by Nano LC-HRMS. Vaccines (Basel) 2024; 12:1055. [PMID: 39340085 PMCID: PMC11436057 DOI: 10.3390/vaccines12091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A nanoliter liquid chromatography-high resolution mass spectrometry-based method was developed for quantitative proteomics analysis of COVID-19 vaccines. It can be used for simultaneous qualitative and quantitative analysis of target proteins and host cell proteins (HCPs) in vaccine samples. This approach can directly provide protein information at the molecular level. Based on this, the proteomes of 15 batches of COVID-19 inactivated vaccine samples from two companies and 12 batches of COVID-19 recombinant protein vaccine samples from one company were successfully analyzed, which provided a significant amount of valuable information. Samples produced in different batches or by different companies can be systematically contrasted in this way, offering powerful supplements for existing quality standards. This strategy paves the way for profiling proteomics in complex samples and provides a novel perspective on the quality evaluation of bio-macromolecular drugs.
Collapse
Affiliation(s)
- Hengzhi Zhao
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Wendong Li
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Jingjing Liu
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Xiao Li
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Hong Ji
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Mo Hu
- Changping Laboratory, Beijing 102206, China
| | - Min Li
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| |
Collapse
|
2
|
Murakami Y, Nozaki Y, Morosawa M, Toyama M, Ogashiwa H, Ueda T, Nakajima K, Tanaka R, Takesue Y. Difference in the impact of coinfections and secondary infections on antibiotic use in patients hospitalized with COVID-19 between the Omicron-dominant period and the pre-Omicron period. J Infect Chemother 2024; 30:853-859. [PMID: 38428674 DOI: 10.1016/j.jiac.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION This study evaluated the effect of coinfections and/or secondary infections on antibiotic use in patients hospitalized with coronavirus disease 2019 (COVID-19). METHOD Days of therapy per 100 bed days (DOT) in a COVID-19 ward were compared between 2022 (Omicron period) and 2021 (pre-Omicron period). Antibiotics were categorized as antibiotics predominantly used for community-acquired infections (CAIs) and antibiotics predominantly used for health care-associated infections (HAIs). Bacterial and/or fungal infections which were proved or assumed on admission were defined as coinfections. Secondary infections were defined as infections that occurred following COVID-19. RESULTS Patients with COVID-19 during the Omicron period were older and had more comorbidities. Coinfections were more common in the Omicron period than in the pre-Omicron period (44.4% [100/225] versus 0.8% [2/257], respectively, p < 0.001), and the mean DOT of antibiotics for CAIs was significantly increased in the Omicron period (from 3.60 to 17.84, p < 0.001). Secondary infection rate tended to be higher in the Omicron period (p = 0.097). Mean DOT of antibiotics for HAIs were appeared to be lower in the COVID-19 ward than in the general ward (pre-Omicron, 3.33 versus 6.37, respectively; Omicron, 3.84 versus 5.22, respectively). No multidrug-resistant gram-negative organisms were isolated in the COVID-19 ward. CONCLUSION Antibiotic use for CAIs was limited in the pre-Omicron period but increased in the Omicron period because of a high coinfection rate on admission. With the antimicrobial stewardship, excessive use of antibiotics for HAIs was avoided in the COVID-19 ward during both periods.
Collapse
Affiliation(s)
- Yasushi Murakami
- Department of Respiratory Medicine, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Yasuhiro Nozaki
- Department of Respiratory Medicine, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Mika Morosawa
- Department of Respiratory Medicine, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Masanobu Toyama
- Department of Pharmacy, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Hitoshi Ogashiwa
- Department of Clinical Technology, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Takashi Ueda
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kazuhiko Nakajima
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ryoya Tanaka
- Department of Clinical Infectious Diseases, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, 479-8510, Japan.
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan; Department of Clinical Infectious Diseases, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, 479-8510, Japan.
| |
Collapse
|
3
|
Sayed AA. Assessing the Diagnostic Values of the Neutrophil-to-Lymphocyte Ratio (NLR) and Systematic Immunoinflammatory Index (SII) as Biomarkers in Predicting COVID-19 Severity: A Multicentre Comparative Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:602. [PMID: 38674248 PMCID: PMC11052014 DOI: 10.3390/medicina60040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
COVID-19 has been notoriously unpredictable in its clinical course. Such unpredictability poses a challenge to clinicians in predicting patients who will develop severe cases and possibly die from the infection. This study aims to assess and compare the diagnostic value of the NLR and SII as biomarkers in predicting COVID-19 severity, represented by mortality, with a multicentre comparative study including 855 patients in Saudi Arabia. Descriptive and analytical statistics were used to compare haematological indices between survivors and non-survivors. The median age of patients included was 41 years old, with an almost equal ratio of men to women. Most participants were Saudis, and the mortality rate in the study cohort was 13.22%. Non-survivors, as compared to survivors, were significantly older, had lower RBC counts, haemoglobin and haematocrit levels, as well as significantly higher WBC and neutrophil counts. Both the NLR and SII were capable of differentiating between survivors and non-survivors, with the latter having significantly higher values. However, the NLR was superior to the SII in such differentiation, as it had a larger area under the curve. This study further confirms the diagnostic values of the NLR and SII as biomarkers in predicting COVID-19 severity and mortality, with the NLR being more sensitive and specific. Clinical guidelines on managing COVID-19 cases should benefit from these findings by harnessing the value of the NLR in COVID-19 management.
Collapse
Affiliation(s)
- Anwar A Sayed
- Department of Basic Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
4
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Sayed AA, Al Nozha OM. Developing a COVID-19 Mortality Prediction (CoMPred) Indicator for ICU Diabetic Patients Treated with Tocilizumab in Saudi Arabia: A Proof-of-Concept Study. Biomedicines 2023; 11:2649. [PMID: 37893025 PMCID: PMC10603829 DOI: 10.3390/biomedicines11102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, efforts have been made to underline its discourse and identify factors contributing to its severe forms. Clinically, many physicians depended on subjective criteria to determine its severe forms, which varied significantly between practices. However, they did not rely on objective laboratory findings. This study aimed to present a novel and objective laboratory-based indicator to predict mortality among COVID-19 patients. The study included 249 COVID-19 patients who were admitted to the ICU, of which 80 did not survive. The COVID-19 Mortality Prediction (CoMPred) indicator was developed by including the age and the following lab investigations: neutrophil-to-lymphocyte ratio (NLR), D-Dimer, PT, aPTT, ESR, CRP, and urea levels. A CoMPred score of 7.5 or higher carries a sensitivity of 81.10% in predicting mortality, i.e., a patient with a CoMPred score of 7.5 or higher has an 81.10% chance of dying. The CoMPred indicator score directly correlates with mortality, i.e., the higher the score, the higher the possibility of the patient dying. In conclusion, the CoMPred indicator is an objective tool that is affordable and widely available, will assist physicians, and limit the burden on clinical decisions on an unpredicted course of COVID-19 in patients.
Collapse
Affiliation(s)
- Anwar A. Sayed
- Department of Medical Microbiology and Immunology, College of Medicine, Taibah University, Madina 42353, Saudi Arabia
| | - Omar M. Al Nozha
- Department of Medicine, Taibah University, Madina 42353, Saudi Arabia
- Department of Medicine, Saudi German Hospital, Madina 42373, Saudi Arabia
| |
Collapse
|