1
|
Menezes J, Jakobsson JE, Bersellini Farinotti A, Krock E, Hunt MA, Simon N, Venckute Larsson S, Tanum L, Kultima K, Kosek E, Svensson CI. Comparative Analysis of Lysophosphatidic Acid Levels in Fibromyalgia and Other Painful Conditions in Female Patients. Eur J Pain 2025; 29:e70022. [PMID: 40269628 PMCID: PMC12018871 DOI: 10.1002/ejp.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/09/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Previous work found a decrease in lysophosphatidylcholines (LPCs) in fibromyalgia (FM) serum, prompting the hypothesis that this decrease could be due to increased conversion of LPC to lysophosphatidic acid (LPA) through autotaxin (ATX). LPA has pronociceptive functions, and increased LPA levels could modulate FM pain. METHODS This study quantified LPA levels in serum and lumbar cerebrospinal fluid (CSF) and serum ATX levels in FM patients, comparing with healthy controls (HCs), osteoarthritis (OA), degenerative disc disease (DDD) and lumbar disc herniation (LDH) patients. RESULTS We found increased serum LPA levels in FM and OA patients, with no changes in FM lumbar CSF. Unexpectedly, a positive correlation between serum LPA and conditioned pain modulation was observed in FM patients, while LPA levels were correlated with pain intensity and Knee Injury and Osteoarthritis Outcome Scores in OA. Serum ATX levels in FM patients were comparable to those in HC but correlated significantly with FM LPA levels (in one cohort), as well as with pain duration and the maximal weekly pain intensity. CONCLUSIONS This study suggests that increased LPA levels play distinct roles in FM and OA patients. In FM, LPA levels were linked to less impaired inhibitory pain pathways, while LPA levels in OA correlated with pain intensity and knee-related impairment. ATX levels in FM serum are associated with pain intensity and duration. These findings underscore the complex role of LPA and ATX in FM pathophysiology. Future studies are essential to clarify LPA's specific roles and to develop therapies. SIGNIFICANCE STATEMENT This study provides novel insights into the role of LPA in FM and other chronic pain conditions. Although ATX levels were unchanged in FM, a positive correlation between serum ATX and LPA supports the role of ATX in LPA conversion. These findings suggest complex lipid dysregulation in FM, with LPA potentially modulating pain pathways. Further research is needed to clarify LPA's role and its potential as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Joana Menezes
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
| | - Jenny E. Jakobsson
- Department of Medical SciencesUppsala UniversityUppsalaSweden
- Clinical Pain Research, Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Alex Bersellini Farinotti
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
| | - Emerson Krock
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
- Faculty of Dental Medicine and Oral Health SciencesAlan Edwards Centre for Research on Pain, McGill UniversityMontrealCanada
| | - Matthew A. Hunt
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
| | - Nils Simon
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
| | - Sigita Venckute Larsson
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
| | - Lars Tanum
- Department of R&D in Mental HealthAkershus University HospitalLørenskogNorway
| | - Kim Kultima
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
- Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - Eva Kosek
- Clinical Pain Research, Department of Surgical SciencesUppsala UniversityUppsalaSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Camilla I. Svensson
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetSolnaSweden
| |
Collapse
|
2
|
Jenkins LC, Chang WJ, Humburg P, Wasinger VC, Stone LS, Dorsey SG, Renn C, Starkweather A, Schabrun SM. Sex Differences in the Serum Proteomic Profile During Acute Low Back Pain-A Preliminary Study of the Relationship to Future Low Back Pain. THE JOURNAL OF PAIN 2024; 25:104426. [PMID: 37989405 DOI: 10.1016/j.jpain.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
The molecular processes driving the transition from acute to chronic low back pain (LBP) remain poorly understood and are likely to be sexually dimorphic. This study aimed to explore sex differences in the serum proteomic profile of people experiencing an acute LBP episode and determine if serum protein concentrations were associated with three-month outcome. Serum samples were collected through venepuncture from 30 female and 29 male participants experiencing an acute LBP episode. Serum samples underwent trypsin digestion and fractionation using hydrophobic interaction chromatography and were then analysed using mass-spectrometry. Mass-spectrometry spectra were searched in the Swissprot database for protein identification. Sex differences in protein abundance changes were evident upon inspection of fold changes. Multivariable data analysis identified 21 serum proteins during the acute episode that correctly classified 93% of males and 23 serum proteins that correctly classified 90% of females with ongoing LBP at 3 months. Pathway analysis suggested the differentially expressed proteins during acute LBP were frequently involved in immune, inflammatory, complement, or coagulation responses. This data provides preliminary evidence that biological processes during an acute LBP episode may contribute to the resolution, or persistence, of LBP symptoms at 3 months, however, these processes differ between males and females. PERSPECTIVE: Differential expression of serum proteins was observed between male and female participants during an acute LBP episode. This preliminary work provides a foundation for future research targeting distinct immune system processes in males and females that may interfere with the transition from acute to chronic LBP.
Collapse
Affiliation(s)
- Luke C Jenkins
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; School of Health Sciences, College of Medicine, Health and Wellbeing, University of Newcastle, New South Wales, Australia
| | - Peter Humburg
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Kensington, NSW, Australia; School of Medical Science, UNSW, Kensington, NSW, Australia
| | - Laura S Stone
- Department of Anesthesiology, Faculty of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Susan G Dorsey
- Department of Pain & Translational Symptom Science, University of Maryland Baltimore, Baltimore
| | - Cynthia Renn
- Department of Pain & Translational Symptom Science, University of Maryland Baltimore, Baltimore
| | - Angela Starkweather
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada; School of Physical Therapy, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Akhilesh, Menon A, Agrawal S, Chouhan D, Gadepalli A, Das B, Kumar R, Singh N, Tiwari V. Virtual screening and molecular dynamics investigations using natural compounds against autotaxin for the treatment of chronic pain. J Biomol Struct Dyn 2024:1-21. [PMID: 38285669 DOI: 10.1080/07391102.2024.2308761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Chronic pain is a common and debilitating condition with a huge social and economic burden worldwide. Currently, available drugs in clinics are not adequately effective and possess a variety of severe side effects leading to treatment withdrawal and poor quality of life. Recent findings highlight the potential role of autotaxin (ATX) as a promising novel target for chronic pain management, extending beyond its previously established involvement in arthritis and other neurological disorders, such as Alzheimer's disease. In the present study, we used a virtual screening strategy by targeting ATX against commercially available natural compounds (enamine- phenotypic screening library) to identify the potential inhibitors for the treatment of chronic pain. After initial identification using molecular docking based virtual screening, molecular mechanics (MM/GBSA), ADMET profiling and molecular dynamics simulation were performed to verify top hits. The computational screening resulted in the identification of fifteen top scoring structurally diverse hits that have free energy of binding (ΔG) values in the range of -25.792 (for compound Enamine_1850) to -74.722 Kcal/mol (for compound Enamine_1687). Moreover, the top-scoring hits have favourable ADME properties as calculated using in-silico algorithms. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about amino acid residues involved in binding. This study led to the identification of potential autotaxin inhibitors with favourable pharmacokinetic properties. Identified hits may further be investigated for their safety and efficacy potential using in-vitro and in-vivo models of chronic pain.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Arjun Menon
- Department of Biotechnology and Bioengineering, Institute of Advance Research, Gandhinagar, India
| | - Somesh Agrawal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Deepak Chouhan
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anagha Gadepalli
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advance Research, Gandhinagar, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
4
|
Larsson AO, Bäckryd E, Eriksson MB. Biomarkers in Pain. Biomedicines 2023; 11:2554. [PMID: 37760995 PMCID: PMC10525981 DOI: 10.3390/biomedicines11092554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The focus of this Special Issue on Biomedicines is on the value of "Biomarkers in Pain" from a broad perspective [...].
Collapse
Affiliation(s)
- Anders O. Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden;
| | - Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Mats B. Eriksson
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
| |
Collapse
|
5
|
Usefulness of lysophosphatidylcholine measurement in the cerebrospinal fluid for differential diagnosis of neuropathic pain: Possible introduction into clinical laboratory testing. Clin Chim Acta 2023; 541:117249. [PMID: 36764506 DOI: 10.1016/j.cca.2023.117249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The differential diagnosis of neuropathic pain, especially discrimination between neuropathic pain caused by spinal canal stenosis (SCS) and neuropathic pain associated with causes other than SCS, is sometimes difficult; however, it is important for surgical application. METHODS We established a reliable method for measuring lysophosphatidylcholine (LPC), a precursor of lysophosphatidic acids which are known as being pain initiators, using a liquid chromatography-tandem mass spectrometry method, and measured the LPC concentrations in the cerebrospinal fluid (CSF) in patients with SCS (SCS group; n = 76), patients with neuropathic pain caused by non-SCS diseases (Others group; n = 49), and control subjects without pain (control group; n = 92). RESULTS Both within-run and between-run CV(%) were almost < 10 %, suggesting an enough performance for clinical introduction. The CSF concentrations of LPC (16:0) and LPC (18:0) were higher in the SCS group than those in the Control or Others group; the concentrations of LPC (18:1), LPC (18:2), LPC (20:4), LPC (22:6) levels were higher in the SCS group than those in the control or others group, but they were also higher in the Others group than those in the control group. The areas under the curve in the ROC curve analyses of LPC (18:1) for discriminating between the SCS and control groups, others and control groups, and SCS and others groups were 0.994, 0.860, and 0.869, respectively. CONCLUSIONS LPC measurement in the CSF is useful for the differential diagnosis of neuropathic pain, especially for surgical decision-making, which is expected for clinical introduction.
Collapse
|
6
|
Hagedorn JM, Gunn J, Budwany R, D’Souza RS, Chakravarthy K, Deer TR. How Well Do Current Laboratory Biomarkers Inform Clinical Decision-Making in Chronic Pain Management? J Pain Res 2021; 14:3695-3710. [PMID: 34887680 PMCID: PMC8651047 DOI: 10.2147/jpr.s311974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Decision-making in chronic pain patients involves a combination of subjective and objective criteria, including patient history, physical examination, imaging, and patient response to prior treatments, clinical experience, probabilities, and recognition of patterns. However, there is a distinct lack of objective laboratory biomarkers in use in routine clinical care. The objective was to review the literature to identify and describe specific biomarkers in chronic pain management. METHODS This is a narrative review of the literature regarding the use of laboratory biomarkers in chronic pain. A librarian-assisted literature search of the PubMed, Science Direct, and Google Scholar databases was performed and resulted in 304 possible manuscripts. We included manuscripts assessing laboratory collected biomarkers from urine, serum, cerebrospinal fluid, and saliva. After screening and review of the initial literature search results, a total of 75 manuscripts were included in the narrative review. CONCLUSION The studies reviewed suggested that specific biomarkers may help identify those patients at risk of disease development and function as a prognostic indicator for disease progression and treatment response. However, additional research is necessary before specific recommendations can be made, and current clinical decision-making is modified.
Collapse
Affiliation(s)
- Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joshua Gunn
- Ethos Research & Development, Newport, KY, USA
| | | | - Ryan S D’Souza
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy R Deer
- The Spine & Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
7
|
Multi-Omics Approach to Elucidate Cerebrospinal Fluid Changes in Dogs with Intervertebral Disc Herniation. Int J Mol Sci 2021; 22:ijms222111678. [PMID: 34769107 PMCID: PMC8583948 DOI: 10.3390/ijms222111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Herniation of the intervertebral disc (IVDH) is the most common cause of neurological and intervertebral disc degeneration-related diseases. Since the disc starts to degenerate before it can be observed by currently available diagnostic methods, there is an urgent need for novel diagnostic approaches. To identify molecular networks and pathways which may play important roles in intervertebral disc herniation, as well as to reveal the potential features which could be useful for monitoring disease progression and prognosis, multi-omics profiling, including high-resolution liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and tandem mass tag (TMT)-based proteomics was performed. Cerebrospinal fluid of nine dogs with IVDH and six healthy controls were used for the analyses, and an additional five IVDH samples were used for proteomic data validation. Furthermore, multi-omics data were integrated to decipher a complex interaction between individual omics layers, leading to an improved prediction model. Together with metabolic pathways related to amino acids and lipid metabolism and coagulation cascades, our integromics prediction model identified the key features in IVDH, namely the proteins follistatin Like 1 (FSTL1), secretogranin V (SCG5), nucleobindin 1 (NUCB1), calcitonin re-ceptor-stimulating peptide 2 precursor (CRSP2) and the metabolites N-acetyl-D-glucosamine and adenine, involved in neuropathic pain, myelination, and neurotransmission and inflammatory response, respectively. Their clinical application is to be further investigated. The utilization of a novel integrative interdisciplinary approach may provide new opportunities to apply innovative diagnostic and monitoring methods as well as improve treatment strategies and personalized care for patients with degenerative spinal disorders.
Collapse
|
8
|
Gerdle B, Ghafouri B. Proteomic studies of common chronic pain conditions - a systematic review and associated network analyses. Expert Rev Proteomics 2020; 17:483-505. [DOI: 10.1080/14789450.2020.1797499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Wåhlén K, Ernberg M, Kosek E, Mannerkorpi K, Gerdle B, Ghafouri B. Significant correlation between plasma proteome profile and pain intensity, sensitivity, and psychological distress in women with fibromyalgia. Sci Rep 2020; 10:12508. [PMID: 32719459 PMCID: PMC7385654 DOI: 10.1038/s41598-020-69422-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022] Open
Abstract
Fibromyalgia (FM) is a complex pain condition where the pathophysiological and molecular mechanisms are not fully elucidated. The primary aim of this study was to investigate the plasma proteome profile in women with FM compared to controls. The secondary aim was to investigate if plasma protein patterns correlate with the clinical variables pain intensity, sensitivity, and psychological distress. Clinical variables/background data were retrieved through questionnaires. Pressure pain thresholds (PPT) were assessed using an algometer. The plasma proteome profile of FM (n = 30) and controls (n = 32) was analyzed using two-dimensional gel electrophoresis and mass spectrometry. Quantified proteins were analyzed regarding group differences, and correlations to clinical parameters in FM, using multivariate statistics. Clear significant differences between FM and controls were found in proteins involved in inflammatory, metabolic, and immunity processes. Pain intensity, PPT, and psychological distress in FM had associations with specific plasma proteins involved in blood coagulation, metabolic, inflammation and immunity processes. This study further confirms that systemic differences in protein expression exist in women with FM compared to controls and that altered levels of specific plasma proteins are associated with different clinical parameters.
Collapse
Affiliation(s)
- Karin Wåhlén
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial Neurosciences (SCON), 141 04, Huddinge, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kaisa Mannerkorpi
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|