1
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
2
|
Bairy G, Ozzin-Kholy Zolipou CO, Nzoumbou-Boko R. In vitro trypanocidal activity of extracts and compounds isolated from Vitellaria paradoxa. BMC Complement Med Ther 2023; 23:346. [PMID: 37770899 PMCID: PMC10540432 DOI: 10.1186/s12906-023-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Vitellaria paradoxa is used in traditional medicine for the treatment of various diseases in tropical countries; however, nothing is known about its anti-trypanosomal activity. Human African trypanosomiasis is a neglected tropical disease of Sub-Saharan Africa's poorest rural regions, and the efficacy of its treatment remains a challenge. This study investigates the as-yet-unknown trypanocidal activity of this plant. METHODS V. paradoxa, commonly known as shea tree, was selected for study based on an ethnobotanical investigation. Ultrasonicated extracts from bark and seeds were successively treated with ethyl acetate and water. Column chromatography, NMR spectroscopy and mass spectrometry were used to identify isolated compounds. Purified trypanosomes (Trypanosoma brucei brucei) were incubated with serial dilutions of the extracts and isolated compounds at 37 °C in 5% CO2 for 24 h. Parasite viability was evaluated under a microscope. RESULTS The ethyl acetate extracts of the bark showed the higher in vitro trypanocidal activity against T. brucei brucei with median inhibitory concentration (IC50) of 3.25 µg/mL. However, the triterpene 1α,2β,3β,19α-tretrahydroxyurs-12-en-28-oic acid and the pentadecanoic acid isolated from the ethyl acetate extract of the seeds showed in vitro trypanocidal activity with IC50 of 11.30 and 70.1 µM, respectively. CONCLUSION The results obtained contribute to the validation of the traditional medicinal use of V. paradoxa. Our results encourage further investigations of this plant, mainly with respect to its in vivo efficacy and toxicity.
Collapse
Affiliation(s)
- Guerisson Bairy
- Department of Organic Chemistry, University of Yaoundé 1, B.O Box 812, Yaoundé, Cameroon
| | - Cyrille Oliver Ozzin-Kholy Zolipou
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic
- Laboratoire des Sciences Biologiques et Agronomiques pour le Développement, Faculté des Sciences, Université de Bangui, BP 1450, Bangui, RCA, Central African Republic
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic.
- Laboratoire de Biochimie, Faculté des Sciences, Université de Bangui, BP 1450, Bangui, RCA, Central African Republic.
| |
Collapse
|
3
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
4
|
Ma T, Jia L, Zhao J, Lv L, Yu Y, Ruan H, Song X, Chen H, Li X, Zhang J, Gao L. Ginkgolide C slows the progression of osteoarthritis by activating Nrf2/HO-1 and blocking the NF-κB pathway. Front Pharmacol 2022; 13:1027553. [PMID: 36386227 PMCID: PMC9651149 DOI: 10.3389/fphar.2022.1027553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 10/19/2023] Open
Abstract
Osteoarthritis (OA) is driven by chronic low-grade inflammation and subsequent cartilage degradation. OA is the most prevalent degenerative joint disease worldwide, and its treatment remains a challenge. The aim of this study was to explore the potential effects and mechanism underlying the anti-OA properties of ginkgolide C (GC). Protective effects of GC on hydrogen peroxide (H2O2)-treated rat chondrocytes were evaluated using ELISA, qPCR, western blot analysis, flow cytometry, ROS detection and immunofluorescence in vitro. Ameliorating effects of GC on cartilage degeneration in rats were evaluated through behavioral assays, microcomputed tomography, histopathological analysis, western blot analysis and ELISA in vivo. In vitro, GC treatment inhibited the release of pro-apoptotic factors induced by H2O2 and promoted the release of the anti-apoptotic proteins. In addition, GC decreased the expression of matrix metalloproteinase (MMP3 and MMP13), thrombospondin motifs 4 (ADAMTS4), and inflammatory mediators inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and SOX9 thereby inhibiting extracellular matrix (ECM) degradation. Mechanistically, GC exerts its anti-apoptotic and anti-inflammatory effects by upregulating the oxidative stress signaling Nrf2/HO-1 pathway and preventing p65 from binding to DNA. Similarly, In a rat model with post-traumatic OA (PTOA) induced by anterior cruciate ligament transection (ACLT), GC inhibited joint pain, cartilage destruction, and abnormal bone remodeling of subchondral bone. GC inhibited H2O2-induced chondrocyte apoptosis through Nrf2/HO-1 and NF-κB axis, exerted anti-inflammatory effects, and inhibited cartilage degeneration in rat OA. Our findings advanced the concept that GC may contribute to cartilage metabolism through anti-inflammatory and anti-apoptotic effects, and the identified GC is a potential therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jinghua Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| |
Collapse
|
5
|
Ma T, Ma Y, Yu Y, Jia L, Lv L, Song X, Tang J, Xu X, Sheng X, Li T, Gao L. Emodin Attenuates the ECM Degradation and Oxidative Stress of Chondrocytes through the Nrf2/NQO1/HO-1 Pathway to Ameliorate Rat Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5581346. [PMID: 39346968 PMCID: PMC11427723 DOI: 10.1155/2022/5581346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/06/2021] [Accepted: 12/24/2021] [Indexed: 10/01/2024]
Abstract
Osteoarthritis (OA) substantially reduces the quality of life of the elderly. OA therapy remains a challenge since no treatment options for its causes are so far available. Over recent years, researchers have speculated that emodin may represent a potential treatment strategy for OA. However, it remains unclear whether the mechanism of action of emodin is associated with the inhibition of OA-induced oxidative stress. In the present study, the potential antioxidant mechanism of action of emodin and its protective properties against the development of OA were investigated both in vitro and in vivo. In vitro, emodin inhibited the production of reactive oxygen species (ROS) in chondrocytes induced by hydrogen peroxide (H2O2) and reduced the expression of matrix metalloproteinase (MMP)3 and MMP13 in a concentration-dependent manner. It was found that emodin upregulated the Nrf2/NQO1/HO-1 pathway, thereby attenuating the effects of oxidative stress caused by OA. In a rat model of posttraumatic OA induced by anterior cruciate ligament transection (ACLT), emodin reduced the extent of joint swelling. Emodin attenuated oxidative damage in the cartilage by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activity, reducing malondialdehyde (MDA) concentration and inhibiting the expression of the extracellular matrix (ECM) degradation biomarkers cartilage oligomeric matrix protein (COMP), and C-terminal telopeptide of type I collagen (CTX-I) and type II collagen (CTX-II), thereby reducing cartilage damage. In summary, the present study indicates that emodin reduces ECM degradation and oxidative stress in chondrocytes via the Nrf2/NQO1/HO-1 pathway, thereby ameliorating OA in rats.
Collapse
Affiliation(s)
- Tianwen Ma
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yuanqiang Ma
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Yu
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lina Jia
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Liangyu Lv
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaopeng Song
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jilang Tang
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xu
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuanbo Sheng
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ting Li
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Gao
- Heilongjiang Key Laboratory for Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Ojo O, Kengne MH, Fotsing MC, Mmutlane EM, Ndinteh DT. Traditional uses, phytochemistry, pharmacology and other potential applications of Vitellaria paradoxa Gaertn. (Sapotaceae): A review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Sirignano C, Nadembega P, Poli F, Romano B, Lucariello G, Rigano D, Taglialatela-Scafati O. Triterpenoids from Vitellaria paradoxa Stem Barks Reduce Nitrite Levels in LPS-Stimulated Macrophages. PLANTS 2021; 10:plants10051006. [PMID: 34070050 PMCID: PMC8158121 DOI: 10.3390/plants10051006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 01/04/2023]
Abstract
Vitellaria paradoxa C. F. Gaertn is widely used in African traditional medicine as an anti-inflammatory remedy to treat rheumatism, gastric problems, diarrhea, and dysentery. The phytochemical investigation of the ethyl acetate extract of V. paradoxa stem bark collected in Burkina Faso led to the isolation of eight known and two triterpenes undescribed to date (7 and 10), in the free alcohol form or as acetyl and cinnamyl ester derivatives. The stereostructures of the new compounds were elucidated using HR-ESIMS and 1D and 2D NMR data. The isolated compounds were evaluated in vitro for their inhibitory effect on nitrite levels on murine macrophages J774 stimulated with the lipopolysaccharide (LPS). Among all the compounds tested, lupeol cinnamate (3) and betulinic acid (5) showed a beneficial effect in reducing nitrite levels produced after LPS stimulation.
Collapse
Affiliation(s)
- Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (B.R.); (G.L.); (O.T.-S.)
| | - Pascal Nadembega
- The UFR Life and Earth Sciences (UFR/SVT), University of Ouagadougou, Ouagadougou 848, Burkina Faso;
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy;
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (B.R.); (G.L.); (O.T.-S.)
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (B.R.); (G.L.); (O.T.-S.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (B.R.); (G.L.); (O.T.-S.)
- Correspondence: ; Tel.: +39-081-679-897
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (B.R.); (G.L.); (O.T.-S.)
| |
Collapse
|
8
|
Ma TW, Wen YJ, Song XP, Hu HL, Li Y, Bai H, Zhao MC, Gao L. Puerarin inhibits the development of osteoarthritis through antiinflammatory and antimatrix-degrading pathways in osteoarthritis-induced rat model. Phytother Res 2021; 35:2579-2593. [PMID: 33350519 DOI: 10.1002/ptr.6988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Puerarin is an isoflavone isolated from the medicinal plant Pueraria lobata. The purpose of this study was to study the antiinflammatory and antimatrix-degrading effects of puerarin in a rat osteoarthritis (OA) model and its protective effects on joints. The rat OA model was established by anterior cruciate ligament transection (ACLT) surgery. Rats (n = 40) were divided into nontreated OA, OA + celecoxib (2.86 mg/kg), OA + puerarin (50 and 100 mg/kg), and control groups. Two weeks after surgical induction, puerarin was administered by gavage daily for 8 weeks. After 8 weeks, macroscopic observation and histopathological images showed that cartilage damage was reduced after puerarin and celecoxib treatment, the intensity of Safranin O staining was high, and the OARSI scores were significantly reduced compared to the OA group. Puerarin reduced the expression of MMP-3, MMP-13, ADAMTS-5, and COX-2 in the cartilage tissue of ACLT rats, inhibited the production of IL-1β, IL-6, and TNF-α inflammatory factors, increased Type II collagen content, and altered the expression of serum OA cartilage degradation/bone turnover biomarkers (CTX-I, CTX-II, COMP, and PIINP). Based on these findings, we speculate that puerarin supplement to attain recovery from OA damage.
Collapse
Affiliation(s)
- Tian-Wen Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ya-Jing Wen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-Peng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hai-Long Hu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ming-Chao Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Ding X, Xie Z, Li G, Zhao Y. A new Zn(
II
) coordination polymer: Selective detection of Fe
3+
and treatment activity of the exercise induced traumatic osteoarthritis by reducing reactive oxygen species production. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuan‐Xi Ding
- Department of Orthopedics The First Hospital of Lanzhou University Lanzhou China
| | - Zhi‐Hui Xie
- Department of Gynecology and Obstetrics Gansu University of Chinese medicine Lanzhou China
| | - Guang‐Jie Li
- Department of Orthopedics The First Hospital of Lanzhou University Lanzhou China
| | - Yue‐Sheng Zhao
- Department of Orthopedics The First Hospital of Lanzhou University Lanzhou China
| |
Collapse
|
10
|
Shea Nut Oil Extracts Enhance the Intra-Articular Sodium Hyaluronate Effectiveness on Surgically Induced OA Progression in Rats. Nutrients 2020; 12:nu12040957. [PMID: 32235555 PMCID: PMC7230975 DOI: 10.3390/nu12040957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) progression is associated with joint pain and stiffness. Intra-articular hyaluronic acid (IAHA) injection in knee OA restores the viscoelasticity of the joint and prevents cartilage damage. Shea nut oil extract (SNO) was shown to provide chondroprotection on surgically-induced OA progression in rats. Here we aim to examine IAHA injection supplemented with SNO diet for a synergetic evaluation on the disease progression in OA rats. We employed an anterior cruciate ligament transection plus medial meniscectomy-induced knee OA rat model with up to 12 weeks of sign/behavior observation (knee width, weight-bearing) and histological assessments of joint damage. We found both IAHA and SNO alone significantly attenuated histological changes of cartilage degeneration and synovial reactions in these knee OA rats. Nonetheless, oral SNO alone mitigated OA pain and inflammation while IAHA alone had no significant impact on the weight-bearing test and knee joint swelling. Moreover, with IAHA-treated rats fed with oral SNO diet, additional anti-inflammatory and anti-nociceptive effects were found, which further enhanced and maintained IAHA protection. Given the differential phenotype of oral SNO vs. IAHA, a regimen of IAHA coupled with SNO supplement provides a long-term effect of IAHA treatment. Taken together, the SNO supplement can be safely used as an adjuvant diet for chronic symptomatic relief of OA coupled with IAHA management.
Collapse
|