1
|
Vega-Ramírez MT, Becerril-Villanueva E, Maldonado-García JL, Pavón L, Pérez-Sánchez G. S100 proteins: a new frontier in fibromyalgia research. Mol Brain 2024; 17:29. [PMID: 38797848 PMCID: PMC11129469 DOI: 10.1186/s13041-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
Fibromyalgia (FM) is a chronic condition that causes widespread pain, fatigue, and other symptoms that significantly affect quality of life. The underlying mechanisms of fibromyalgia involve both the immune system and the central nervous system. It has been proposed that changes in multiple ascending and descending pathways in the central nervous system may contribute to increased pain sensitivity in individuals with this condition. Recent research has identified S100 proteins as a new area of interest in fibromyalgia studies. These proteins are a group of small molecular weight proteins involved in inflammation and various functions inside and outside of cells, and they may play a critical role in the development and progression of FM. Although S100B has been the most studied in FM patients, other studies have reported that S100A7, S100A8, S100A9, and S100A12 may also be useful as potential biomarkers or for a deeper understanding of FM pathophysiology. The potential role of S100 proteins in the pathophysiology of fibromyalgia could be mediated by RAGE and TLR4, which signal through JNK, ERK, and p38 to activate AP-1 and NF-κB and induce the release of proinflammatory cytokines, thereby producing the inflammation, fatigue, and chronic pain characteristic of fibromyalgia. To gain new perspectives on targeted therapeutic approaches, it is crucial to understand how S100 proteins could impact the pathophysiology of fibromyalgia. This review examines the potential role of S100 proteins in fibromyalgia and their impact on improving our comprehension of the condition, as well as facilitating further research on this interesting topic.
Collapse
Affiliation(s)
- María Teresa Vega-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México
| | - José Luis Maldonado-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Miguel Hidalgo, Ciudad de México, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México.
| |
Collapse
|
2
|
Hua T, Kong E, Zhang H, Lu J, Huang K, Ding R, Wang H, Li J, Han C, Yuan H. PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain Behav Immun 2024; 118:101-114. [PMID: 38402915 DOI: 10.1016/j.bbi.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
Microglia induced chronic inflammation is the critical pathology of Neuropathic pain (NP). Metabolic reprogramming of macrophage has been intensively reported in various chronic inflammation diseases. However, the metabolic reprogramming of microglia in chronic pain remains to be elusive. Here, we reported that immuno-metabolic markers (HIF-1α, PKM2, GLUT1 and lactate) were related with increased expression of PRMT6 in the ipsilateral spinal cord dorsal horn of the chronic construction injury (CCI) mice. PRMT6 deficiency or prophylactic and therapeutic intrathecal administration of PRMT6 inhibitor (EPZ020411) ameliorated CCI-induced NP, inflammation and glycolysis in the ipsilateral spinal cord dorsal horn. PRMT6 knockout or knockdown inhibited LPS-induced inflammation, proliferation and glycolysis in microglia cells. While PRMT6 overexpression exacerbated LPS-induced inflammation, proliferation and glycolysis in BV2 cells. Recent research revealed that PRMT6 could interact with and methylate HIF-1α, which increased HIF-1α protein stability. In sum, increased expression of PRMT6 exacerbates NP progress by increasing glycolysis and neuroinflammation through interacting with and stabilizing HIF-1α in a methyltransferase manner, which outlines novel pathological mechanism and drug target for NP.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Anesthesiology, The No. 988 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinfang Lu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kesheng Huang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chaofeng Han
- Department of Histology and Embryology, and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Hua T, Yang M, Song H, Kong E, Deng M, Li Y, Li J, Liu Z, Fu H, Wang Y, Yuan H. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnology 2022; 20:324. [PMID: 35836229 PMCID: PMC9281091 DOI: 10.1186/s12951-022-01522-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Background Chronic inflammatory pain significantly reduces the quality of life and lacks effective interventions. In recent years, human umbilical cord mesenchymal stem cells (huc-MSCs)-derived exosomes have been used to relieve neuropathic pain and other inflammatory diseases as a promising cell-free therapeutic strategy. However, the therapeutic value of huc-MSCs-derived exosomes in complete Freund's adjuvant (CFA)-induced inflammatory pain remains to be confirmed. In this study, we investigated the therapeutic effect and related mechanisms of huc-MSCs-derived exosomes in a chronic inflammatory pain model. Methods C57BL/6J male mice were used to establish a CFA-induced inflammatory pain model, and huc-MSCs-derived exosomes were intrathecally injected for 4 consecutive days. BV2 microglia cells were stimulated with lipopolysaccharide (LPS) plus adenosine triphosphate (ATP) to investigate the effect of huc-MSCs-derived exosomes on pyroptosis and autophagy. Bioinformatic analysis and rescue experiments were used to demonstrate the role of miR-146a-5p/ TRAF6 in regulating pyroptosis and autophagy. Western blotting, RT-qPCR, small interfering RNA and Yo-Pro-1 dye staining were performed to investigate the related mechanisms. Results Huc-MSCs-derived exosomes alleviated mechanical allodynia and thermal hyperalgesia in CFA-induced inflammatory pain. Furthermore, huc-MSCs-derived exosomes attenuated neuroinflammation by increasing the expression of autophagy-related proteins (LC3-II and beclin1) and inhibiting the activation of NLRP3 inflammasomes in the spinal cord dorsal horn. In vitro, NLRP3 inflammasome components (NLRP3, caspase1-p20, ASC) and gasdermin D (GSDMD-F, GSDMD-N) were inhibited in BV2 cells pretreated with huc-MSCs-derived exosomes. Western blot and Yo-Pro-1 dye staining demonstrated that 3-MA, an autophagy inhibitor, weakened the protective effect of huc-MSCs-derived exosomes on BV2 cell pyroptosis. Importantly, huc-MSCs-derived exosomes transfected with miR-146a-5p mimic promoted autophagy and inhibited BV2 cell pyroptosis. TRAF6, as a target gene of miR-146a-5p, was knocked down via small-interfering RNA, which increased pyroptosis and inhibited autophagy. Conclusion Huc-MSCs-derived exosomes attenuated inflammatory pain via miR-146a-5p/TRAF6, which increased the level of autophagy and inhibited pyroptosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01522-6.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhixiao Liu
- Research Center of Developmental Biology, Department of Histology and Embryology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
4
|
Yan W, Liu W, Wu J, Wu L, Xuan S, Wang W, Shang A. Neuropeptide Y in the amygdala contributes to neuropathic pain-like behaviors in rats via the neuropeptide Y receptor type 2/mitogen-activated protein kinase axis. Bioengineered 2022; 13:8101-8114. [PMID: 35313782 PMCID: PMC9162000 DOI: 10.1080/21655979.2022.2051783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neuropeptide Y (NPY) is a highly conserved endogenous peptide in the central and peripheral nervous systems, which has been implicated in nociceptive signaling in neuropathic pain. However, downstream mechanistic actions remain uncharacterized. In this study, we sought to investigate the mechanism of NPY and its receptor NPY2R in the amygdala in rats with neuropathic pain-like behaviors induced by chronic constriction injury (CCI) of the sciatic nerve. The expression of NPY and NPY2R was found to be aberrantly up-regulated in neuropathic pain-related microarray dataset. Further, NPY was found to act on NPY2R in the basolateral amygdala (BLA). As reflected by the decrease in mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) as well as the increase of NPY expression in the amygdala of rats with neuropathic pain-like behaviors, NPY was closely related to the effect of amygdala nerve activity in neuropathic pain. Subsequently, mechanistic investigations indicated that NPY2R activated the MAPK signaling pathway in the amygdala. NPY2R-induced decrease of MWT and TWL were also restored in the presence of MAPK signaling pathway antagonist. Moreover, it was revealed that NPY2R overexpression promoted the viability while inhibiting the apoptosis of microglia. Taken together, NPY in the amygdala interacts with NPY2R to activate the MAPK signaling pathway, thereby promoting the occurrence of neuropathic pain.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Laboratory Medicine Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, P.R. China.,Department of Laboratory Medicine, Tinghu People's Hospital, Yancheng, P.R. China
| | - Wuchao Liu
- Department of Neurorehabilitation, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, P.R. China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Lipei Wu
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, P.R. China
| | - Shihai Xuan
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, P.R. China
| | - Weiwei Wang
- Department of Pathology, Tinghu People's Hospital, Yancheng, P.R. China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Hua T, Wang H, Fan X, An N, Li J, Song H, Kong E, Li Y, Yuan H. BRD4 Inhibition Attenuates Inflammatory Pain by Ameliorating NLRP3 Inflammasome-Induced Pyroptosis. Front Immunol 2022; 13:837977. [PMID: 35154163 PMCID: PMC8826720 DOI: 10.3389/fimmu.2022.837977] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic pain, such as persistent inflammatory pain, remains a public health problem that has no effective treatment at present. Bromodomain-containing protein 4 (BRD4) inhibition, induced by JQ1 injection or BRD4 knockdown, has been used to attenuate inflammatory pain; However, it remains elusive whether BRD4 aggravates inflammatory pain by regulating inflammasome. Western blot and immunofluorescence staining showed that BRD4 expression increased after administration of complete Freund’s adjuvant (CFA) and reached its peak on day 3. Immunofluorescence staining showed that BRD4 was mainly colocalized with NeuN-positive neurons in the spinal cord, which was accompanied by upregulation of inflammasome component proteins, such as NLRP3, gasdermin D, and caspase-1. JQ1 was intrathecally injected into mice 1 h before CFA administration, and the mechanical and thermal hyperalgesia levels were measured on days 1, 3, and 7 after CFA administration. CFA-induced inflammatory pain, paw inflammation, and swelling were attenuated by pre-treatment with JQ1. To our knowledge, this study was the first to prove that NLRP3 inflammasome-induced neuronal pyroptosis participates in inflammatory pain. BRD4 inhibition decreased the expression of pyroptosis-related proteins by inhibiting the activation of NF-κB signaling pathway, both in vivo and in vitro. Taken together, BRD4 inhibition exerted analgesic and anti-inflammatory effects against inflammatory pain by inhibiting NF-κB and inflammasome activation, which protected neural cells from pyroptosis.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoyi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Ni An
- Chinese People's Liberation Army, Liao Yang, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|