1
|
Kasi PB, Opoku H, Novikova LN, Wiberg M, Kingham PJ, Wang J, Novikov LN. Quercetin-derived carbon dots promote proliferation and migration of Schwann cells and enhance neurite outgrowth. Colloids Surf B Biointerfaces 2025; 251:114609. [PMID: 40073625 DOI: 10.1016/j.colsurfb.2025.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Quercetin, a flavonoid known for its antioxidant properties, has recently garnered attention as a potential neuroprotective agent for treatment of the injured nervous system. The repair of peripheral nerve injuries hinges on the proliferation and migration of Schwann cells, which play a crucial role in supporting axonal growth and myelination. In this study we synthesized Quercetin-derived carbon dots (QCDs) and investigated their effects on cultured Schwann cells and the NG108-15 cell line. QCDs was obtained by solvothermal synthesis and characterized via UV-vis absorption spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The particles demonstrated significant dose-dependent free radical scavenging activity in DPPH and ABTS radical scavenging assays, supported in vitro proliferation and migration of Schwann cells, expression of neurotrophic and angiogenic growth factors, and stimulated neurite outgrowth from NG108-15 cells. Thus, QCDs could serve as a potential novel treatment strategy to promote regeneration in the injured peripheral nervous system.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Medical and Translational Biology, Umeå University, Umeå SE-901 87, Sweden
| | - Henry Opoku
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Liudmila N Novikova
- Department of Medical and Translational Biology, Umeå University, Umeå SE-901 87, Sweden
| | - Mikael Wiberg
- Department of Medical and Translational Biology, Umeå University, Umeå SE-901 87, Sweden; Department of Diagnostics and Intervention, Section of Hand and Plastic Surgery, Umeå University, Umeå SE-901 87, Sweden
| | - Paul J Kingham
- Department of Medical and Translational Biology, Umeå University, Umeå SE-901 87, Sweden
| | - Jia Wang
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå SE-901 87, Sweden.
| | - Lev N Novikov
- Department of Medical and Translational Biology, Umeå University, Umeå SE-901 87, Sweden.
| |
Collapse
|
2
|
Jiang W, Yu W, Tan Y. Activation of GPR55 alleviates neuropathic pain and chronic inflammation. Biotechnol Appl Biochem 2025; 72:196-206. [PMID: 39219239 DOI: 10.1002/bab.2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Neuropathic pain (NP) significantly impacts the quality of life due to its prolonged duration and lack of effective treatment. Recent findings suggest that targeting neuroinflammation is a promising approach for treating NP. G protein-coupled receptor 55 (GPR55), a member of the GPCR family, plays an important role in neuroinflammatory regulation. CID16020046, a GPR55 agonist, possesses promising anti-neuroinflammatory effects. Herein, the therapeutic effect of CID16020046 on NP was investigated in an NP rat model. The NP model was established using the unilateral sciatic nerve chronic constriction injury (CCI) assay. Both sham and CCI rats were intraperitoneally administered with 20 mg/kg CID16020046. NP was assessed using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). First, we showed that GPR55 was downregulated in the spinal dorsal horn of CCI rats. After CCI rats were treated with CID16020046, the values of PWT and PWL were increased, indicating their effect on pain relief. The treated rats had attenuated release of inflammatory cytokines in the spinal cord, decreased spinal malondialdehyde (MDA) levels, and increased spinal glutathione peroxidase (GSH-PX) activity. Additionally, the increased levels of phosphorylated nuclear factor (NF)-κB p65 in CCI rats were significantly alleviated by CID16020046 treatment. Mechanistically, we showed that CID16020046 significantly suppressed the activation of the Janus kinase (JAK2)/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the spinal cord of CCI-treated rats. However, Colivelin TFA (a STAT3 agonist) abolished the effect of CID16020046 on JAK2/STAT3 activation. In conclusion, our data demonstrate that the activation of GPR55 by CID16020046 alleviates NP and neuroinflammation in CCI rats by mediating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Weiqun Jiang
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yu Tan
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Jabbari S, Zakaria ZA, Mohammadi S. Antinociceptive and antineuropathic effects of Trifolium resupinatum L. on formalin-induced nociception and cervical spinal cord hemi-contusion: Underlying Mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118913. [PMID: 39369921 DOI: 10.1016/j.jep.2024.118913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium resupinatum L. (Fabaceae), known as Persian clover, ethnomedicinally used in Persian folk medicine to treat peritoneal inflammation, rheumatism, and back pain. AIM OF THE STUDY To investigate the antineuropathic and antinociceptive activities of Trifolium resupinatum leaves essential oil (TREO) in male Wistar rats, as well as to explore the potential mechanisms of action. MATERIALS AND METHODS The antinociceptive activity of TREO and its main constituents, quercetin (Qc) was assessed using the formalin-induced paw licking test. Moreover, the potential mechanisms of antinociception were evaluated through various competitive and non-competitive antagonisms. Additionally, the antineuropathic potential was investigated using the cervical spinal cord hemi-contusion (CCS) model, and the role of phosphorylated Stat-3 was analyzed using Western blotting. RESULTS TREO exerted significant antinociceptive activity (P < 0.01) in both phases of the formalin-induced test; however, its effects were more pronounced in the second phase. Modulators of the NO-cGMP-K+ channel pathway significantly reversed the antinociceptive activity of TREO (P < 0.05). Additionally, antagonists of TRPV1 and TRPV2, as well as CB1 and GABAA receptors, significantly reversed the antinociceptive effects of TREO (P < 0.05). In another study, both TREO and Qc significantly attenuated hyperalgesia and mechanical allodynia (P < 0.01) when evaluated using the CCS-induced nociception model. Notably, TREO also reduced the expression levels of interleukin-1 beta, interleukin-2, and tumor necrosis factor alpha in CCS-induced rats (P < 0.05). CONCLUSION TREO and Qc exhibit both antinociceptive and anti-neuropathic activities. The antinociceptive effects are partially mediated through the NO-cGMP-K+ channel pathways, along with the activation of TRPV, GABA, and cannabinoid receptors. Furthermore, the anti-neuropathic activity of TREO may be partially regulated through the inhibition of cytokines.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia; Department of Environmental Health, Faculty of Public Health, Campus C Universitas Airlangga, Jalan Mulyorejo, Surabaya, 60115 East Java, Indonesia.
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
5
|
Mostafa EMA, Atta R, Maher SA, El-Kherbetawy MK, Ameen AM. Quercetin and its potential therapeutic effects on aluminum phosphide-induced cardiotoxicity in rats: Role of NOX4, FOXO1, ERK1/2, and NF-κB. Tissue Cell 2024; 91:102622. [PMID: 39549503 DOI: 10.1016/j.tice.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Acute Aluminum phosphide (AlP) poisoning poses a serious global issue, yet the exact mechanisms behind AlP-induced cardiotoxicity are still not well understood. Moreover, there is no specific antidote available for AlP toxicity. Nevertheless, Quercetin (QE) has emerged as a promising therapeutic candidate in various contexts. Accordingly, our study aimed to evaluate the QE potential therapeutic effects against AlP-induced cardiotoxicity and the mechanisms underlying such effects. Rats were assigned into four groups: Group I (control group), Group II (vehicle (corn oil) group), Group III (AlP group) received a single dose of AlP (10 mg/kg body weight) dissolved in corn oil by oral gavage, and Group IV (AlP + QE group) received a single dose of QE (400 mg/kg body weight) dissolved in saline, one hour after AlP administration. AlP-induced cardiotoxicity was evidenced by the increase in cardiac troponin I (cTnI) as well as the hemodynamic, ECG, and histopathological abnormalities. The AlP group denoted a decrease of the antioxidant enzymes; catalase and SOD and an increase of the lipid peroxidation marker; MDA. This was associated with a notable increase in inflammatory cytokines (TNFα, IL-6, and IL1β), in addition to a significant upregulation of the expression of NOX4, FOXO1, ERK1/2, and NF-κB. Moreover, Caspase3, and BAX showed strong immunopositive expression, while Bcl-2 showed mild immunoexpression. On the other hand, treatment with QE showed an improvement in the cardiotoxic effects of AlP, as indicated by significant enhancements in biomarkers, functional assessments, and histopathological findings. These results suggest that QE may be a promising candidate for treating AlP-induced cardiotoxicity, attributed to its antioxidant, anti-inflammatory, and anti-apoptotic properties, particularly emphasizing the roles of NOX4, FOXO1, ERK1/2, and NF-κB.
Collapse
Affiliation(s)
- Enas M A Mostafa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha Atta
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Angie M Ameen
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Wang L, Gao Y, Qiao Y, Wang X, Liang Z, Xu JT, Li L. Activation of MSK-1 exacerbates neuropathic pain through histone H3 phosphorylation in the rats' dorsal root ganglia and spinal dorsal horn. Brain Res Bull 2024; 219:111135. [PMID: 39557219 DOI: 10.1016/j.brainresbull.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The exact mechanism underlies the development of neuropathic pain is not yet completely understood. Mitogen and stress-activated kinase 1 (MSK-1) is an important downstream kinase of the mitogen-activated protein kinase (MAPK). It has been extensively studied in the central nervous system, but whether MSK-1 is associated with the neuropathic pain remains elusive. In this experiment, Lumbar 5 spinal nerve ligation (SNL) was used to establish a neuropathic pain condition in the rats. Western blotting, qRT-PCR, immunohistochemistry, intrathecal catheterization and drugs delivery were evaluated to study the physiological responses of the animals. The results showed that SNL resulted in elevated phosphorylated MSK-1 (p-MSK-1) expression in the ipsilateral dorsal root ganglion (DRG) and the spinal dorsal horn in rats, while total MSK-1 (t-MSK-1) did not change significantly. Intrathecal injection of the MSK-1 inhibitor SB747651A partially reversed established neuropathic pain. Additionally, intrathecal administration of MSK-1 siRNA either preoperatively or 7 days postoperatively relieves the development and maintenance of pain, respectively. Meanwhile, the expression levels of p-H3S10, a downstream target of MSK-1, also displayed a significant increase after SNL. And these changes could be reversed by using MSK-1 siRNA. Collectively, the increase of MSK-1 induced by SNL participates in the development and maintenance of neuropathic pain by regulating the expression of p-H3S10 in DRG and spinal dorsal horn. Concentrating on MSK-1 may result in a novel approach to the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Sun X, Ni S, Zhou Q, Zou D. Exogenous NT-3 Promotes Phenotype Switch of Resident Macrophages and Improves Sciatic Nerve Injury through AMPK/NF-κB Signaling Pathway. Neurochem Res 2024; 49:2600-2614. [PMID: 38904909 DOI: 10.1007/s11064-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Neurotrophin-3 (NT-3) is an important family of neurotrophic factors with extensive neurotrophic activity, which can maintain the survival and regeneration of nerve cells. However, the mechanism of NT-3 on macrophage phenotype transformation after sciatic nerve injury is not clear. In this study, we constructed a scientific nerve compression injury animal model and administered different doses of NT-3 treatment through osmotic minipump. 7 days after surgery, we collected sciatic nerve tissue and observed the distribution of macrophage phenotype through iNOS and CD206 immunofluorescence. During the experiment, regular postoperative observations were conducted on rats. After the experiment, sciatic nerve tissue was collected for HE staining, myelin staining, immunofluorescence staining, and Western blot analysis. To verify the role of the AMPK/NF-κB pathway, we applied the AMPK inhibitor Compound C and the NF-κB inhibitor BAY11-7082 to repeat the above experiment. Our experimental results reveal that NT-3 promotes sciatic nerve injury repair and polarization of M2 macrophage phenotype, promotes AMPK activation, and inhibits NF-κB activation. The repair effect of high concentration NT-3 on sciatic nerve injury is significantly enhanced compared to low concentration. Compound C administration can weaken the effect of NT-3, while BAY 11-7082 can enhance the effect of NT-3. In short, NT-3 significantly improves sciatic nerve injury in rats, promotes sciatic nerve function repair, accelerates M2 macrophage phenotype polarization, and improves neuroinflammatory response. The protective effects of NT-3 mentioned above are partially related to the AMPK/NF-κB signal axis.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Shuqin Ni
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Qingsheng Zhou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Dexin Zou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China.
| |
Collapse
|
8
|
Takeda M, Sashide Y, Toyota R, Ito H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024; 29:3957. [PMID: 39203035 PMCID: PMC11357422 DOI: 10.3390/molecules29163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side effects. Quercetin is a flavonoid that is widely found in fruits and vegetables. Since recent studies have demonstrated that quercetin can modulate neuronal excitability in the nervous system, including nociceptive sensory transmission via mechanoreceptors and voltage-gated ion channels, and inhibit the cyclooxygenase-2-cascade, it is possible that quercetin could be a complementary alternative medicine candidate; specifically, a therapeutic agent against nociceptive and pathological pain. The focus of this review is to elucidate the neurophysiological mechanisms underlying the modulatory effects of quercetin on nociceptive neuronal activity under nociceptive and pathological conditions, without inducing side effects. Based on the results of our previous research on trigeminal pain, we have confirmed in vivo that the phytochemical, quercetin, demonstrates (i) a local anesthetic effect on nociceptive pain, (ii) a local anesthetic effect on pain related to acute inflammation, and (iii) an anti-inflammatory effect on chronic pain. In addition, we discuss the contribution of quercetin to the relief of nociceptive and inflammatory pain and its potential clinical application.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan; (Y.S.); (R.T.); (H.I.)
| | | | | | | |
Collapse
|
9
|
Wang Q, Xie Y, Ma S, Luo H, Qiu Y. Role of microglia in diabetic neuropathic pain. Front Cell Dev Biol 2024; 12:1421191. [PMID: 39135776 PMCID: PMC11317412 DOI: 10.3389/fcell.2024.1421191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Approximately one-third of the patients with diabetes worldwide suffer from neuropathic pain, mainly categorized by spontaneous and stimulus-induced pain. Microglia are a class of immune effector cells residing in the central nervous system and play a pivotal role in diabetic neuropathic pain (DNP). Microglia specifically respond to hyperglycemia along with inflammatory cytokines and adenosine triphosphate produced during hyperglycemic damage to nerve fibers. Because of the presence of multiple receptors on the microglial surface, microglia are dynamically and highly responsive to their immediate environment. Following peripheral sensitization caused by hyperglycemia, microglia are affected by the cascade of inflammatory factors and other substances and respond accordingly, resulting in a change in their functional state for DNP pathogenesis. Inhibition of receptors such as P2X reporters, reducing cytokine expression levels in the microglial reactivity mechanisms, and inhibiting their intracellular signaling pathways can effectively alleviate DNP. A variety of drugs attenuate DNP by inhibiting the aforementioned processes induced by microglial reactivity. In this review, we summarize the pathological mechanisms by which microglia promote and maintain DNP, the drugs and therapeutic techniques available, and the latest advances in this field.
Collapse
Affiliation(s)
- Qian Wang
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yilin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shichao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
10
|
Almasi E, Heidarianpour A, Keshvari M. The interactive effects of different exercises and hawthorn consumption on the pain threshold of TMT-induced Alzheimer male rats. J Physiol Sci 2024; 74:36. [PMID: 39014320 PMCID: PMC11251243 DOI: 10.1186/s12576-024-00925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
Exercise increases the pain threshold in healthy people. However, the pain threshold modulation effect of exercise and hawthorn is unclear because of its potential benefits in people with persistent pain, including those with Alzheimer's disease. Accordingly, after the induction of Alzheimer's disease by trimethyl chloride, male rats with Alzheimer's disease were subjected to a 12-week training regimen consisting of resistance training, swimming endurance exercises, and combined exercises. In addition, hawthorn extract was orally administered to the rats. Then, their pain threshold was evaluated using three Tail-flick, Hot-plate, and Formalin tests. Our results showed that Alzheimer's decreased the pain threshold in all three behavioral tests. Combined exercise with hawthorn consumption had the most statistically significant effect on Alzheimer's male rats' pain threshold in all three experiments. A combination of swimming endurance and resistance exercises with hawthorn consumption may modulate hyperalgesia in Alzheimer's rats. Future studies need to determine the effects of these factors on the treatment and/or management of painful conditions.
Collapse
Affiliation(s)
- Ensiyeh Almasi
- Department of Exercise Physiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Maryam Keshvari
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| |
Collapse
|
11
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
12
|
Albuquerque AFM, do Nascimento Costa JJ, Silva JRV, Silva PGDB, Chaves FN, Maferano EFE, Filho ELC, Pereira KMA, Santiago SL, Ribeiro TR, Costa FWG. Does non-steroidal anti-inflammatory drugs-related preemptive analgesia modulate SOCS3/IL-6 pathway in oral surgery? Inflammopharmacology 2024; 32:1017-1024. [PMID: 38347301 DOI: 10.1007/s10787-024-01433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 04/11/2024]
Affiliation(s)
| | | | - José Roberto Viana Silva
- Biotechnology Nucleus of Sobral-NUBIS, School of Medicine, Federal University of Ceará, Sobral, Brazil
| | | | - Filipe Nobre Chaves
- Postgraduate Program in Health Sciences, School of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Eduardo Frederico Eduardo Maferano
- Postgraduate Program in Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.
- Department of Dentistry, School of Health Sciences, Zambeze University, Tete, Mozambique.
- Bairro Josina Machel, Enclosure of the Provincial Hospital of Tete, Tete, Mozambique.
| | - Edson Luiz Cetira Filho
- Postgraduate Program in Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Karuza Maria Alves Pereira
- Postgraduate Program in Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sérgio Lima Santiago
- Postgraduate Program in Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thyciana Rodrigues Ribeiro
- Postgraduate Program in Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fábio Wildson Gurgel Costa
- Postgraduate Program in Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
13
|
Jabbari S, Zakaria ZA, Ahmadimoghaddam D, Mohammadi S. The oral administration of Lotus corniculatus L. attenuates acute and chronic pain models in male rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117181. [PMID: 37734474 DOI: 10.1016/j.jep.2023.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lotus corniculatus L. (Fabaceae) traditionally used in Persian folk medicine to heal peritoneal inflammation and back pain. AIM OF THE STUDY To explore the antinociceptive (acute pain) and anti-neuropathic (chronic pain) activities of Lotus corniculatus leaves essential oil (LCEO) in addition to uncovering the possible mechanisms of antinociception. MATERIALS AND METHODS LCEO as well as the pure oleanolic acid (OA) compound, were assayed for their effects on acute (formalin induced paw licking test or FIPT) and chronic (cervical contusion injury models on the fifth cervical vertebra or CCS; 14-day intervals) pain. The possible involvements of NO-cGMP-K+ channel, TRPV, dopamine, cannabinoid, PPAR, adrenergic, and opioid mechanisms in the antinociceptive activity of LCEO have studied by formalin test. The levels of p53 and inflammatory markers were measured using a streptavidin biotin immune peroxidase complex and ELISA methods, respectively. RESULTS The LCEO and OA exerted antinociceptive activity in the first-phase of FIPT. Pretreatment with antagonists of TRPV1, dopamine D2, cannabinoid type1 and 2, and NO-cGMP-K+ channel blockers (glibenclamide, L-NAME and methylene blue) attenuated the antinociceptive effect of LCEO in FIPT. In addition, LCEO and OA meaningfully reduced hyperalgesia (days 6-14) and mechanical allodynia (days 2-14) in the CCS model. LCEO suppressed the apoptotic marker (p53) in CCS model and also ameliorated IL-2, TNF-α, and IL-1 in the spinal cord. CONCLUSION Finally, LCEO inhibited acute (possibly via the modulation of opioid, TRPV, dopamine, cannabinoid mechanisms as well as NO-cGMP-K+ channel) and chronic pain (via suppressing apoptotic and inflammatory markers) in male rats. The results also suggest that OA has analgesic activity against acute and chronic pain conditions.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Davoud Ahmadimoghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
Xie W, Hou J, Li C, Zhang Q. Sodium aescinate ameliorates chronic neuropathic pain in male mice via suppressing JNK/p38-mediated microglia activation. Brain Inj 2024; 38:126-135. [PMID: 38324656 DOI: 10.1080/02699052.2024.2307966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE A study confirmed that sodium aescinate (SA) can effectively relieve bone cancer pain, but its role in neuropathic pain (NP) remains confused. METHODS Eighty male mice were randomly divided into four groups: sham+vehicle, sham+SA (40 μg/L, intrathecal injection), chronic contraction injury (CCI)+vehicle, CCI+SA. Behavioral assessments were used to evaluate the locomotor activity and paw withdrawal threshold (PWT) of mice. At the end of the study, spinal cord tissues were collected for histopathological analysis. The JNK/p38 signaling activation, Iba-1 expression, pro-inflammatory cytokines levels, and microglia subtype were assessed by western blotting, immunohistochemical staining, enzyme-linked immunosorbent assay, and flow cytometry with CD86/CD206, respectively. RESULTS Early treatment with SA delayed the development of mechanical allodynia in CCI mice. Repeated SA treatment could prominently increase the reduction of PWT induced by CCI, and improve the locomotor activity of CCI mice. Mechanically, CCI surgery induced significant up-regulation of p-JNK and p-p38 protein levels, increased number and M1/M2 ratio of microglia, as well as pro-inflammatory factors in the spinal cords of mice, which could be blocked after SA administration. CONCLUSIONS SA might suppress the activation of microglia and neuroinflammation by selectively inhibiting the JNK/p38 signaling pathway, thereby alleviating CCI-induced NP in male mice.
Collapse
Affiliation(s)
- Wenqiang Xie
- Department of Anesthesiology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Jie Hou
- Department of Quality Management, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Changke Li
- Department of Anesthesiology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Qiang Zhang
- Department of Anesthesiology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
15
|
Gao H, Chen Z, Halihaman B, Huang L, Wang Z, Ding X. Network Pharmacology and In vitro Experimental Verification to Explore the Mechanism of Chaiqin Qingning Capsule in the Treatment of Pain. Curr Pharm Des 2024; 30:278-294. [PMID: 38310568 DOI: 10.2174/0113816128280351240112044430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Chaiqin Qingning capsule (CQQNC) has been used to relieve pain in practice. However, the active components, pain targets, and molecular mechanisms for pain control are unclear. OBJECTIVE To explore the active components and potential mechanisms of the analgesic effect of CQQNC through network pharmacology and in vitro experiments. METHODS The main active components and the corresponding targets of CQQNC were screened from the TCMSP and the SwissTargetPrediction databases. Pain-related targets were selected in the OMIM, Gene- Cards, and DrugBank databases. These targets were intersected to obtain potential analgesic targets. The analgesic targets were imported into the STRING and DAVID databases for protein-protein interaction (PPI), gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Cytoscape software (V3.7.1) was used to construct an active component-intersection network. Finally, the key components were docked with the core targets. The analgesic mechanism of CQQNC was verified by RAW264.7 cell experiment. RESULTS 30 active CQQNC components, 617 corresponding targets, and 3,214 pain-related target genes were found. The main active components were quercetin, kaempferol, and chenodeoxycholic acid etc. The key targets were ALB, AKT1, TNF, IL6, TP53, IL1B, and SRC. CQQNC can exert an analgesic effect through PI3K-Akt, MAPK signaling pathways, etc. Molecular docking showed that these active components had good binding activities with key targets. The results of in vitro experiments showed that CQQNC could exert antiinflammatory and analgesic effects through MAPK/AKT/NF-kB signaling pathways. CONCLUSION CQQNC exerts pain control through inhibiting MAPK/AKT/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Hongjin Gao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengwei Chen
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Buliduhong Halihaman
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lianzhan Huang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhen Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xuansheng Ding
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
16
|
Duan C, Zhu Y, Zhang Z, Wu T, Shen M, Xu J, Gao W, Pan J, Wei L, Su H, Shi C. Esketamine inhibits the c-Jun N-terminal kinase pathway in the spinal dorsal horn to relieve bone cancer pain in rats. Mol Pain 2024; 20:17448069241239231. [PMID: 38417838 PMCID: PMC10938627 DOI: 10.1177/17448069241239231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is one of the most common and feared symptoms in patients with advanced tumors. The X-C motif chemokine ligand 12 (CXCL12) and the CXCR4 receptor have been associated with glial cell activation in bone cancer pain. Moreover, mitogen-activated protein kinases (MAPKs), as downstream CXCL12/CXCR4 signals, and c-Jun, as activator protein AP-1 components, contribute to the development of various types of pain. However, the specific CIBP mechanisms remain unknown. Esketamine is a non-selective N-methyl-d-aspartic acid receptor (NMDA) inhibitor commonly used as an analgesic in the clinic, but its analgesic mechanism in bone cancer pain remains unclear. We used a tumor cell implantation (TCI) model and explored that CXCL12/CXCR4, p-MAPKs, and p-c-Jun were stably up-regulated in the spinal cord. Immunofluorescence images showed activated microglia in the spinal cord on day 14 after TCI and co-expression of CXCL12/CXCR4, p-MAPKs (p-JNK, p-ERK, p-p38 MAPK), and p-c-Jun in microglia. Intrathecal injection of the CXCR4 inhibitor AMD3100 reduced JNK and c-Jun phosphorylations, and intrathecal injection of the JNK inhibitor SP600125 and esketamine also alleviated TCI-induced pain and reduced the expression of p-JNK and p-c-Jun in microglia. Overall, our data suggest that the CXCL12/CXCR4-JNK-c-Jun signaling pathway of microglia in the spinal cord mediates neuronal sensitization and pain hypersensitivity in cancer-induced bone pain and that esketamine exerts its analgesic effect by inhibiting the JNK-c-Jun pathway.
Collapse
Affiliation(s)
- Chenxia Duan
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Zhu
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhuoliang Zhang
- Department of Anesthesiology, Suzhou Municipal Hospital, Xuzhou Medical University, Suzhou, China
| | - Tiantian Wu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mengwei Shen
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinfu Xu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wenxin Gao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jianhua Pan
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lei Wei
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huibin Su
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chenghuan Shi
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
17
|
Fu S, Zhao X, Li Y, Fan X, Huang Z. Dexmedetomidine alleviates hippocampal neuronal loss and cognitive decline in rats undergoing open surgery under sevoflurane anaesthesia by suppressing CCAAT/enhancer-binding protein beta. Eur J Neurosci 2024; 59:36-53. [PMID: 37985440 DOI: 10.1111/ejn.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Dexmedetomidine (Dex) may exert neuroprotective effects by attenuating inflammatory responses. However, whether Dex specifically improves postoperative cognitive dysfunction (POCD) by inhibiting microglial inflammation through what pathway remains unclear. In this study, the POCD model was constructed by performing open surgery after 3 h of continuous inhalation of 3% sevoflurane to rats, which were intraperitoneally injected with 25 μg/kg Dex .5 h before anaesthesia. The results displayed that Dex intervention decreased rat escape latency, maintained swimming speed and increased the number of times rats crossed the platform and the time spent in the target quadrant. Furthermore, the rat neuronal injury was restored, alleviated POCD modelling-induced rat hippocampal microglial activation and inhibited microglial M1 type polarization. Besides, we administered Dex injection and/or CCAAT/enhancer-binding protein beta (CEBPB) knockdown on the basis of sevoflurane exposure and open surgery and found that CEBPB was knocked down, resulting in the inability of Dex to function, which confirmed CEBPB as a target for Dex treatment. To sum up, Dex improved POCD by considering CEBPB as a drug target to activate the c-Jun N-terminal kinase (JNK)/p-38 signaling pathway, inhibiting microglial M1 polarization-mediated inflammation in the central nervous system.
Collapse
Affiliation(s)
- Shanshan Fu
- Department of Anesthesiology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Xianghai Zhao
- Department of Anesthesiology, Stomatological Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Yingna Li
- Department of Anesthesiology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Xinwen Fan
- Department of Anesthesiology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Zeqing Huang
- Department of Anesthesiology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Liu Q, Zhang X, Mao P, Wang Z, Mao Q, Wang C, Liu J, Zhu X, Wang B, Wei H. Shuangshi Tonglin capsule improves chronic prostatitis through the SIRT-1/AMPK and MAPK signalling pathways. Heliyon 2023; 9:e21745. [PMID: 38027908 PMCID: PMC10663862 DOI: 10.1016/j.heliyon.2023.e21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives To explore the effects of the Shuangshi Tonglin (SSTL) capsule on CP/CPPS and reveal the therapeutic mechanisms. Methods A CP/CPPS rat-model group received an intraprostatic injection of CFA. SSTL capsule were administered daily by oral gavage at doses of 1.25, 2.5, and 5.0 g/kg for 28 days. Pain threshold tests were performed, and prostate and blood samples were collected. We performed histological analysis of the prostate tissue and immunohistochemical analysis of TNF-α and COX-2. Measure the TNF-α levels, detect antioxidant levels in serum and prostate tissue, and evaluate the expression of proteins with the AMPK/SIRT-1 and MAPK signalling pathways. Results After SSTL capsule treatment, all animals exhibited an increased mechanical pain threshold in the lower abdomen, decreased inflammation in the stroma, and reduced histological structural damage. Inflammation was reduced through the observed decrease in the levels of various inflammatory factors, as well as in the increase of the levels of MDA, p-AMPK, and SIRT-1. The suppression of IKKβ, p-P38, p-ERK and p-JNK was also observed. Conclusions SSTL capsule treatment decreased inflammation in the stroma and reduced histological structural damage. It improved CP/CPPS symptoms by inhibiting oxidative stress and inflammation. Our study indicates that the SSTL capsule is an effective treatment for prostatitis.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xinyue Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Peng Mao
- Shaanxi Momentum Pharmaceutical Co., Ltd., Xianyang, 712000, Shaanxi, China
| | - Ziqiang Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qian Mao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chuan Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jiping Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xingmei Zhu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Baoan Wang
- Shaanxi Momentum Pharmaceutical Co., Ltd., Xianyang, 712000, Shaanxi, China
| | - Hao Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| |
Collapse
|
19
|
Suzuki T, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Anti-Inflammatory Effects of Dietary Polyphenols through Inhibitory Activity against Metalloproteinases. Molecules 2023; 28:5426. [PMID: 37513300 PMCID: PMC10385587 DOI: 10.3390/molecules28145426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases that play important roles in a variety of diseases, including cancer, cardiovascular disease, diabetes, obesity, and brain diseases. Dietary polyphenols are thought to have a variety of beneficial effects on these diseases characterized by inflammation. Clinical studies have demonstrated that MMPs are in most cases upregulated in various inflammatory diseases, including osteoarthritis, rheumatoid arthritis, inflammatory bowel disease, and Alzheimer's disease. Studies using patient-derived human samples, animal studies, and cellular experiments have suggested that polyphenols may be beneficial against inflammatory diseases by suppressing MMP gene expression and enzyme activity. One important mechanism by which polyphenols exert their activity is the downregulation of reactive oxygen species that promote MMP expression. Another important mechanism is the direct binding of polyphenols to MMPs and their inhibition of enzyme activity. Molecular docking analyses have provided a structural basis for the interaction between polyphenols and MMPs and will help to explore new polyphenol-based drugs with anti-inflammatory properties.
Collapse
Affiliation(s)
- Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kamigyo-ku, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Hiroki Tanabe
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Nayoro, Hokkaido 096-8641, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
20
|
Li F, Li D, Liu J, Tang S, Yan J, Li H, Wan Z, Wang L, Yan X. Activation of Protease-Activated Receptor-1 Causes Chronic Pain in Lupus-Prone Mice Via Suppressing Spinal Glial Glutamate Transporter Function and Enhancing Glutamatergic Synaptic Activity. THE JOURNAL OF PAIN 2023; 24:1163-1180. [PMID: 36641029 DOI: 10.1016/j.jpain.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. In the present study, we found that the spinal protease-activated receptor-1(PAR1) plays an important role in the genesis of chronic pain in MRL/lpr mice. Female MRL/lpr mice with chronic pain had activation of astrocytes, over-expression of thrombin and PAR1, enhanced glutamatergic synaptic activity, as well as suppressed activity of adenosine monophosphate-activated protein kinase (AMPK) and glial glutamate transport function in the spinal cord. Intrathecal injection of either the PAR1 antagonist, or AMPK activator attenuated heat hyperalgesia and mechanical allodynia in MRL/lpr mice. Furthermore, we also identified that the enhanced glutamatergic synaptic activity and suppressed activity of glial glutamate transporters in the spinal dorsal horn of MRL/lpr mice are caused by activation of the PAR1 and suppression of AMPK signaling pathways. These findings suggest that targeting the PAR1 and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE. PERSPECTIVE: Our study provides evidence suggesting activation of PAR1 and suppression of AMPK in the spinal cord induces thermal hyperalgesia and mechanical allodynia in a lupus mouse model. Targeting signaling pathways regulating the PAR1 and AMPK could potentially provide a novel approach to the management of chronic pain caused by SLE.
Collapse
Affiliation(s)
- Fen Li
- Department of Neurology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianguang Liu
- Department of Neurology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shifan Tang
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hongwei Li
- Department of Internal Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyun Wan
- Department of Internal Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Lian Wang
- Department of Internal Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xisheng Yan
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Lin L, Chen W, Yao C, Wu L, Yan Q, Cai X, Zhu S, Lao Y, Zhang G, Lan X, Chen Y. Exploring the target and molecular mechanism of Astragalus membranaceus in the treatment of vascular cognitive impairment based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e33063. [PMID: 36961195 PMCID: PMC10036060 DOI: 10.1097/md.0000000000033063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 03/25/2023] Open
Abstract
Astragalus membranaceus (AM) is a traditional Chinese herbal medicine extensively utilized in vascular cognitive impairment (VCI) treatment. However, due to the complex components of AM, its exact molecular mechanism remains unclear. Therefore, this study investigated the target and molecular mechanism of AM to treat VCI based on network pharmacology and molecular docking. Firstly, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, STITCH, and SwissTargetPrediction were utilized to gather the primary active ingredients of AM. The potential therapeutic targets of VCI were collected through GeneCards, OMIM, and DisGeNET databases. Secondly, the protein-protein interaction network was built using the STRING database. The enrichment analysis of gene ontology and the Kyoto Encyclopedia of Genes and Genome pathways was carried out in the R language. Finally, The network topology calculation of Cytoscape software was combined with module analysis to predict the binding properties of its active ingredients and targets. Twenty effective compounds and 733 targets were screened from AM, among which 158 targets were seen as possible targets of AM to treat VCI. MAPK3 and MMP9 were the critical targets of AM intervention in VCI. The crucial pathways include PI3K/Akt, MAPK, Rap1, and Ras signaling pathways. Besides, calycosin and quercetin might be the potential active compounds of AM for VCI treatment. AM intervenes in VCI through a multi-ingredient, multi-target, and multi-pathway coordination mechanism. These findings provide a foundation for a deeper understanding of the molecular mechanisms by which AM is effective in treating VCI.
Collapse
Affiliation(s)
- Long Lin
- Guangxi University of Chinese Medicine, Nanning, China
- Nanfang College·Guangzhou, Guangzhou, China
| | - Wei Chen
- Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Wu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qian Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Sijing Zhu
- University of Hong Kong, Hong Kong, China
| | - Yilin Lao
- Guangxi University of Chinese Medicine, Nanning, China
| | - Guangfa Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xuelin Lan
- Guangxi University of Chinese Medicine, Nanning, China
| | | |
Collapse
|
22
|
Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother 2023; 161:114515. [PMID: 36913894 DOI: 10.1016/j.biopha.2023.114515] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
23
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
24
|
Goel R, Kumar N, Kumar Saxena P, Pratap Singh A, Bana S. Pitavastatin attenuates neuropathic pain induced by partial sciatic nerve in Wistar rats. J Pharm Pharmacol 2023; 75:66-75. [PMID: 36383203 DOI: 10.1093/jpp/rgac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Pitavastatin is a competitive HMG-CoA reductase inhibitor for lowering of cholesterol level and low density lipoprotein cholesterol. This study was designed to evaluate the effect of pitavastatin in neuropathic pain induced by partial sciatic nerve ligation along with neuronal changes in Wister rats. METHODS Pitavastatin was started three days prior to the surgery and continued for 14 days The pain was determined by thermal hyperalgesia and cold allodynia. The biochemical changes were estimated at the end of the study. The levels of cytokines were measured using an ELISA test. Western blot analysis was used to detect levels of expression of JNK, p-JNK, ERK, p-ERK, p38MAPK, p-p38MAPK. The sciatic nerve was investigated histopathologically. KEY FINDINGS Pitavastatin significantly ameliorated nerve pain induced by PSNL and also attenuated the biochemical changes in a dose-dependent manner. The levels of inflammatory mediators were inhibited by pitavastatin. There was significant improvement in sciatic nerve fibres histology. The levels of p-38, p-ERK, and p-JNK and their associated phosphorylated proteins were reduced after treatment with pitavastatin. CONCLUSION The present study indicates that treatment with pitavastatin reversed the PSNL-induced neuropathy in Wister rats and may be an additional therapeutic strategy in the management of neuropathic pain.
Collapse
Affiliation(s)
- Radha Goel
- Department of Pharmacology, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Nitin Kumar
- Department of Pharmacognosy, IIMT College of Medical Science, IIMT University, Ghaziabad, Uttar Pradesh, India
| | - Prasoon Kumar Saxena
- Department of Pharmacognosy, SRM Modinagar College of Pharmacy, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Alok Pratap Singh
- Department of Pharmaceutics, SRM Modinagar College of Pharmacy, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Sweeti Bana
- Department of Pharmacology, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
25
|
Xie W, Li C, Hou J, Zhang Q. Sodium aescinate ameliorates chronic neuropathic pain in mice via suppressing JNK/p-38-mediated microglia activation.. [DOI: 10.21203/rs.3.rs-2469196/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
A study confirmed that sodium aescinate (SA), a traditional Chinese medicine extracted from the dried ripe fruits of the aescin plant chestnut, can effectively relieve bone cancer pain, but its role in neuropathic pain (NP) remains confused. This study aimed to investigate whether SA has a protective effect on NP and its underlying mechanisms. Thirty mice were randomly divided into three groups (n = 10 per group): sham + vehicle, chronic contraction injury (CCI) + vehicle, CCI + SA. SA (40 µg/L, intrathecal injection) was administered once daily for 5 consecutive days starting on day 7 after surgery. The mechanical withdrawal thresholds (paw withdraw threshold, PWT) of the contralateral and ipsilateral paws of mice in each group were subsequently detected daily. The results displayed that repeated SA treatment could prominently increase the reduction of PWT induced by CCI in the ipsilateral paw of mice. Downregulation of p- c-Jun N-terminal kinase (JNK) and p-p38 protein levels and reduction of microglial activation marker Iba-1-positive ratio, M1/M2 ratio of microglia, and proinflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, in the spinal cords of CCI-mice was observed after intrathecal SA. The above data illustrated that SA might suppress the activation of microglia and neuroinflammation by selectively inhibiting the JNK/p38 signaling pathway, which in turn alleviated CCI-induced NP in mice.
Collapse
Affiliation(s)
| | | | - Jie Hou
- Shantou University Medical College
| | | |
Collapse
|
26
|
Fideles SOM, de Cássia Ortiz A, Buchaim DV, de Souza Bastos Mazuqueli Pereira E, Parreira MJBM, de Oliveira Rossi J, da Cunha MR, de Souza AT, Soares WC, Buchaim RL. Influence of the Neuroprotective Properties of Quercetin on Regeneration and Functional Recovery of the Nervous System. Antioxidants (Basel) 2023; 12:149. [PMID: 36671011 PMCID: PMC9855066 DOI: 10.3390/antiox12010149] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Quercetin is a dietary flavonoid present in vegetables, fruits, and beverages, such as onions, apples, broccoli, berries, citrus fruits, tea, and red wine. Flavonoids have antioxidant and anti-inflammatory effects, acting in the prevention of several diseases. Quercetin also has neuroprotective properties and may exert a beneficial effect on nervous tissue. In this literature review, we compiled in vivo studies that investigated the effect of quercetin on regeneration and functional recovery of the central and peripheral nervous system. In spinal cord injuries (SCI), quercetin administration favored axonal regeneration and recovery of locomotor capacity, significantly improving electrophysiological parameters. Quercetin reduced edema, neutrophil infiltration, cystic cavity formation, reactive oxygen species production, and pro-inflammatory cytokine synthesis, while favoring an increase in levels of anti-inflammatory cytokines, minimizing tissue damage in SCI models. In addition, the association of quercetin with mesenchymal stromal cells transplantation had a synergistic neuroprotective effect on spinal cord injury. Similarly, in sciatic nerve injuries, quercetin favored and accelerated sensory and motor recovery, reducing muscle atrophy. In these models, quercetin significantly inhibited oxidative stress and cell apoptosis, favoring Schwann cell proliferation and nerve fiber remyelination, thus promoting a significant increase in the number and diameter of myelinated fibers. Although there is still a lack of clinical research, in vivo studies have shown that quercetin contributed to the recovery of neurological functions, exerting a beneficial effect on the regeneration of the central and peripheral nervous system.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | | | | | - Jéssica de Oliveira Rossi
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
- Medical Bill Audit, Holy House of Mercy (Santa Casa de Misericórdia), Marília 17515-900, Brazil
| | - Marcelo Rodrigues da Cunha
- Anatomy Department, Padre Anchieta University Center (UniAnchieta), Jundiai 13210-795, Brazil
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiai 13202-550, Brazil
| | | | - Wendel Cleber Soares
- Department of Exact Sciences, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| |
Collapse
|
27
|
Fang Q, Li J, Wang Y, Liu X, Shi Y, Chen J, Zhan H, Zeng Y, Wu W. AdipoRon Engages Microglia to Antinociception through the AdipoR1/AMPK Pathway in SNI Mice. Mediators Inflamm 2023; 2023:7661791. [PMID: 37077671 PMCID: PMC10110386 DOI: 10.1155/2023/7661791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Background Microglia-associated neuroinflammation plays a crucial role in the initiation and development of neuropathic pain (NeuP). AdipoRon is an analog of adiponectin that exerts an anti-inflammatory effect in various diseases through the adiponectin receptor 1 (AdipoR1) signaling mechanism. Adenosine monophosphate-activated protein kinase (AMPK) is a downstream target of AdipoR1, and the AdipoR1/AMPK pathway is involved in the regulation of inflammation. This study is aimed at investigating whether AdipoRon could alleviate NeuP by inhibiting the expression of microglia-derived tumor necrosis factor-alpha (TNF-α) through the AdipoR1/AMPK pathway. Methods In vivo, the NeuP model was established in mice through the spared nerve injury. The von Frey test was used to detect the effect of AdipoRon on the mechanical paw withdrawal threshold. Western Blot was performed to detect the effects of AdipoRon on the expression of TNF-α, AdipoR1, AMPK, and p-AMPK. Immunofluorescence was performed to observe the effects of AdipoRon on spinal microglia. In vitro, lipopolysaccharide (LPS) was used to induce inflammatory responses in BV2 cells. The effect of AdipoRon on cell proliferation was detected by CCK-8. qPCR was used to examine the effects of AdipoRon on the expression of TNF-α and polarization markers. And the effect of AdipoRon on the AdipoR1/AMPK pathway was confirmed by Western Blot. Results Intraperitoneal injection of AdipoRon alleviated mechanical nociception in SNI mice, and the application of AdipoRon reduced the expression of TNF-α and the number of microglia in the ipsilateral spinal cord. Additionally, AdipoRon decreased the protein level of AdipoR1 and increased the protein level of p-AMPK in the ipsilateral spinal cord. In vitro, AdipoRon inhibited BV2 cell proliferation and reversed LPS-induced TNF-α expression and polarization imbalance. Furthermore, AdipoRon reversed the LPS-induced increase in AdipoR1 expression and decrease in p-AMPK expression in BV2 cells. Conclusions AdipoRon may alleviate NeuP by reducing microglia-derived TNF-α through the AdipoR1/AMPK pathway.
Collapse
Affiliation(s)
- Qian Fang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Jie Li
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Yaping Wang
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence; Key Laboratory of Mental Health of the Ministry of Education; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515 Guangdong, China
| | - Xinli Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Jiali Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000 Guangdong, China
| | - Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| |
Collapse
|
28
|
Huang Y, Zhang X, Zou Y, Yuan Q, Xian YF, Lin ZX. Quercetin Ameliorates Neuropathic Pain after Brachial Plexus Avulsion via Suppressing Oxidative Damage through Inhibition of PKC/MAPK/ NOX Pathway. Curr Neuropharmacol 2023; 21:2343-2361. [PMID: 37533160 PMCID: PMC10556381 DOI: 10.2174/1570159x21666230802144940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. METHODS The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. RESULTS QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. CONCLUSION Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Yanfeng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xie Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
| | - Yidan Zou
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Zhang Y, Ye G, Chen Y, Sheng C, Wang J, Kong L, Yuan L, Lin C. Veratramine ameliorates pain symptoms in rats with diabetic peripheral neuropathy by inhibiting activation of the SIGMAR1-NMDAR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2145-2154. [PMID: 36373991 PMCID: PMC9665081 DOI: 10.1080/13880209.2022.2136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Veratramine may have a potential therapeutic effect for diabetic peripheral neuropathy (DPN). OBJECTIVE To evaluate whether veratramine ameliorates neuropathic pain in a rat diabetic model. MATERIALS AND METHODS Sprague-Dawley rats were used for a diabetic model induced by a streptozotocin + high-fat diet. Two months after the induction of the diabetic model, the rats with DPN were screened according to the mechanical pain threshold. The rats with DPN were divided into a model group (n = 12) and a treated group (n = 12). Rats with diabetes, but without peripheral neuropathy, were used in the vehicle group (n = 9). The treatment group received 50 μg/kg veratramine via the tail vein once a day for 4 weeks. During modelling and treatment, rats in all three groups were fed a high-fat diet. RESULTS The mechanical withdrawal threshold increased from 7.5 ± 1.9 N to 17.9 ± 2.6 N in DPN rats treated with veratramine. The tolerance time of the treated group to hot and cold ectopic pain increased from 11.8 ± 4.2 s and 3.4 ± 0.8 s to 20.4 ± 4.1 s and 5.9 ± 1.7 s, respectively. Veratramine effectively alleviated L4-L5 spinal cord and sciatic nerve pathological injury. Veratramine inhibited the expression of SIGMAR1 and the phosphorylation of the N-methyl-d-aspartate receptor (NMDAR) Ser896 site in spinal cord tissue, as well as inhibited the formation of SIGMAR1-NMDAR and NMDAR-CaMKII complexes. DISCUSSION AND CONCLUSIONS Veratramine may alleviate the occurrence of pain symptoms in rats with DPN by inhibiting activation of the SIGMAR1-NMDAR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chaoxu Sheng
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Jianlin Wang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Lingsi Kong
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| |
Collapse
|
30
|
Liu C, Liu DQ, Tian YK, Mei W, Tian XB, Xu AJ, Zhou YQ. The Emerging Role of Quercetin in the Treatment of Chronic Pain. Curr Neuropharmacol 2022; 20:2346-2353. [PMID: 35959909 PMCID: PMC9890298 DOI: 10.2174/1570159x20666220812122437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Despite much research efforts being devoted to designing alternative pharmacological interventions, chronic pain remains to be an unresolved clinical problem. Quercetin, a compound that belongs to the flavonoids family, is abundantly found in fruits and vegetables. Emerging evidence indicates that quercetin possesses anti-nociceptive effects in different rodent models of chronic pain, including inflammatory pain, neuropathic pain and cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of quercetin in preclinical studies. These studies showed that quercetin exerts potent analgesic effects against chronic pain via suppressing neuroinflammation and oxidative stress as well as modulation of synaptic plasticity, GABAergic system, and opioidergic system. Considering that the safety of quercetin is well established, it has great potential for clinical use in pain treatment.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Jun Xu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
31
|
Aghamohammadi M, Zolghadr L, Nezhad NS, Ahmadpour Yazdi H, Esfahani AJ, Gheibi N. Investigating the effects of quercetin fatty acid esters on apoptosis, mechanical properties, and expression of ERK in melanoma cell line (A375). Life Sci 2022; 310:121007. [PMID: 36181863 DOI: 10.1016/j.lfs.2022.121007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Malignant melanoma (MM) is the most fatal skin cancer with a critical increase in the number of cases in the last decades. Recent studies have shown the antitumor potential of active biological phytochemical structures of flavonoids for the prevention and treatment of cancerous cells. In this study, two quercetin fatty acid esters (α-linolenic acid (ALA) and linoleic acid (LA)) compounds were evaluated in terms of inducing apoptotic human melanoma cells (A375) death in vitro. MAIN METHODS The MTT assay was utilized for comparing the effects of quercetin, ALA, and LA on A375 cell viability concentrations of 5, 25, 35, 50, and 100μg/mL for 24 and 48 h to obtain IC50. To detect the effects on apoptosis and to determine p-ERK/ERK apoptosis-related signaling pathway proteins level, flow-cytometry and western blot were used. Finally, the nano-mechanical properties of the melanoma A375 membrane structure containing elastic modulus value and cell-cell adhesion forces were investigated using Atomic Force Microscopy (AFM). Statistical data was analyzed in GraphPad v.8.0.0. KEY FINDINGS The most significant A375 cell viability amplified effect of Q-LA was observed with a half-maximal inhibitory concentration (IC50 = 35 μg/ml, 48 h), proportional to dose. Ester compounds, especially Q-LA, showed the highest cell proliferation inhibition with improved elastic modulus, cell-cell adhesion forces (253 ± 11.2), and elevated apoptosis-inducing effect (p < 0.01**). Moreover, Q-LA significantly decreased the mean levels of p-ERK phosphorylation (0.1439) and, subsequently, apoptosis in A375 cells. SIGNIFICANCE The data presented in this study confirmed the antitumor activity of ester compounds against A375 cells, high-lighting the ability of the tested compounds to induce apoptosis.
Collapse
Affiliation(s)
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | | | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
32
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
33
|
Yao C, Ren J, Huang R, Tang C, Cheng Y, Lv Z, Kong L, Fang S, Tao J, Fu Y, Zhu Q, Fang M. Transcriptome profiling of microRNAs reveals potential mechanisms of manual therapy alleviating neuropathic pain through microRNA-547-3p-mediated Map4k4/NF-κb signaling pathway. J Neuroinflammation 2022; 19:211. [PMID: 36045396 PMCID: PMC9434879 DOI: 10.1186/s12974-022-02568-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Local neuroinflammation secondary to spinal nerve compression in lumbar disk herniation (LDH) is a key driver contributing to neuropathic pain. Manual therapy (MT), a widely used nonsurgical therapy, can relieve LDH-mediated pain by reducing inflammation. MT has attracted extensive attention; however, its mechanism remains poorly understood. MicroRNAs (miRNAs) are important regulators of pain signaling transduction, but are rarely reported in the chronic compression of dorsal root ganglia (CCD) model, and further investigation is needed to decipher whether they mediate anti-inflammatory and analgesic effects of MT. METHODS We used a combination of in vivo behavioral and molecular techniques to study MT intervention mechanisms. Neuropathic pain was induced in a CCD rat model and MT intervention was performed according to standard procedures. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokine levels in dorsal root ganglia (DRG). Small RNA sequencing, immunofluorescence, Western blot, and qRT-PCR were performed to screen miRNAs and their target genes and determine core factors in the pathway possibly regulated by miRNA-mediated target gene in DRG of MT-treated CCD rats. RESULTS Compared with naive rats, small RNA sequencing detected 22 differentially expressed miRNAs in DRG of CCD rats, and compared with CCD rats, MT-treated rats presented 19 differentially expressed miRNAs, which were functionally associated with nerve injury and inflammation. Among these, miR-547-3p was screened as a key miRNA mediating neuroinflammation and participating in neuropathic pain. We confirmed in vitro that its function is achieved by directly regulating its target gene Map4k4. Intrathecal injection of miR-547-3p agomir or MT intervention significantly reduced Map4k4 expression and the expression and phosphorylation of IκBα and p65 in the NF-κB pathway, thus reducing the inflammatory cytokine levels and exerting an analgesic effect, whereas intrathecal injection of miR-547-3p antagomir led to opposite effects. CONCLUSIONS In rats, CCD-induced neuropathic pain leads to variation in miRNA expression in DRG, and MT can intervene the transcription and translation of inflammation-related genes through miRNAs to improve neuroinflammation and alleviate neuropathic pain. MiR-547-3p may be a key target of MT for anti-inflammatory and analgesia effects, which is achieved by mediating the Map4k4/NF-κB pathway to regulate downstream inflammatory cytokines.
Collapse
Affiliation(s)
- Chongjie Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Zhizhen Lv
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053 People’s Republic of China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Sitong Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Jiming Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yangyang Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Min Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
34
|
Castro JCD, Wang D, Chien GCC. Regenerative medicine for neuropathic pain: physiology, ultrasound and therapies with a focus on alpha-2-macroglobulin. Pain Manag 2022; 12:779-793. [PMID: 35762220 DOI: 10.2217/pmt-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The currently available drugs to treat neuropathic pain do not provide adequate pain management. As such, other treatments including stem cells, platelet-rich plasma and plasma-derived molecules such as alpha-2 macroglobulin (A2M) are being explored because they show promising potential for neuropathic pain. The various mechanisms and immunomodulatory effects could be a desirable approach in targeting neuropathic pain. This review indicates that A2M can be highly efficacious due to its conformational change during activation and specificity of action on various cytokines. Its ability to reduce neuropathic pain can further the future of neuropathic intervention. However, there is a lack of robust clinical studies and thus further research is needed to verify and expand the understanding of its therapeutic effects.
Collapse
Affiliation(s)
- Jeimylo C de Castro
- Department of Physical Medicine & Rehabilitation, The Medical City-South Luzon, Santa Rosa, Laguna, 4026, Philippines.,SMARTMD Center for Non-Surgical Pain Interventions, Makati, 1224, Philippines
| | - Daniel Wang
- Kansas City University, Kansas City, MO 64106, USA
| | - George C Chang Chien
- Pain Management, Ventura County Medical Center, Ventura, CA 93003, USA.,GCC Institute for Regenerative Medicine, Irvine, CA 92606, USA
| |
Collapse
|
35
|
Wang X, Fu Y, Botchway BOA, Zhang Y, Zhang Y, Jin T, Liu X. Quercetin Can Improve Spinal Cord Injury by Regulating the mTOR Signaling Pathway. Front Neurol 2022; 13:905640. [PMID: 35669881 PMCID: PMC9163835 DOI: 10.3389/fneur.2022.905640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of spinal cord injury (SCI) is complex. At present, there is no effective treatment for SCI, with most current interventions focused on improving the symptoms. Inflammation, apoptosis, autophagy, and oxidative stress caused by secondary SCI may instigate serious consequences in the event of SCI. The mammalian target of rapamycin (mTOR), as a key signaling molecule, participates in the regulation of inflammation, apoptosis, and autophagy in several processes associated with SCI. Quercetin can reduce the loss of myelin sheath, enhance the ability of antioxidant stress, and promote axonal regeneration. Moreover, quercetin is also a significant player in regulating the mTOR signaling pathway that improves pathological alterations following neuronal injury. Herein, we review the therapeutic effects of quercetin in SCI through its modulation of the mTOR signaling pathway and elaborate on how it can be a potential interventional agent for SCI.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yuke Fu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | | | - Yufeng Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| |
Collapse
|
36
|
Explore the Mechanism of Astragalus mongholicus Bunge against Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Experimental Verification. Gastroenterol Res Pract 2022; 2022:4745042. [PMID: 35422858 PMCID: PMC9005278 DOI: 10.1155/2022/4745042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Objective Astragalus mongholicus Bunge [Fabaceae] (AMB), a traditional Chinese medicine (TCM), has been widely used to treat liver diseases in the clinic. However, the efficacy and mechanism of AMB in the treatment of nonalcoholic fatty liver disease (NAFLD) remain unclear. The purpose of this study was to systematically investigate the active components and mechanisms of AMB against NAFLD based on network pharmacology, molecular docking, and experimental verification. Methods First, the bioactive components and relevant targets of AMB were screened from the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database, and NAFLD-related targets were obtained from the GeneCards database. Then, the AMB-NAFLD protein target interaction network was built by the STRING database. GO and KEGG pathway enrichment analyses were performed using the DAVID database. The component targets were visualized using Cytoscape software. Finally, molecular docking and experiments were used to verify the results of network pharmacological prediction. Results Network pharmacology predicted that quercetin may be the main active component in AMB, and the TNF and MAPK signaling pathways may be the key targets of AMB against NAFLD. Molecular docking validation results demonstrated that quercetin, as the main active component of AMB, had the highest binding affinity with TNF. Furthermore, quercetin played a distinct role in alleviating NAFLD through in vitro experiments. Quercetin upregulated the phosphorylation levels of AMPK and inhibited the expression of p-MAPK and TNF-α. In addition, we further discovered that quercetin could increase ACC phosphorylation and CPT1α expression in PA-induced HepG2 cells. Conclusions Our results indicated that quercetin, as the main active component in AMB, exerts an anti-NAFLD effect by regulating the AMPK/MAPK/TNF-α and AMPK/ACC/CPT1α signaling pathways to inhibit inflammation and alleviate lipid accumulation.
Collapse
|
37
|
Itou H, Toyota R, Takeda M. Phytochemical quercetin alleviates hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia comparable to NSAIDs. Mol Pain 2022; 18:17448069221108971. [PMID: 35734996 PMCID: PMC9234920 DOI: 10.1177/17448069221108971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quercetin is a flavonoid that is widely found in fruits and vegetables. Quercetin inhibits cyclooxygenase-2 and modulates voltage-gated ion channels, however, its effect on nociceptive neuron-associated inflammatory hyperalgesia remains unknown. The present study investigated under in vivo conditions whether systemic administration of quercetin attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with mechanical hyperalgesia and compared its effect to the non-steroidal anti-inflammatory drug, diclofenac. Complete Freund's adjuvant was injected into the whisker pads of rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was significantly lower in inflamed rats compared to uninjected naïve rats, and this lowered threshold returned to control levels 2 days after administration of quercetin or diclofenac. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to both non-noxious and noxious mechanical stimuli in inflamed rats was significantly decreased after quercetin or diclofenac administration under combination of three anesthetic agents (medetomidine, midazolam and butorphanol). In addition, the increased mean spontaneous discharge of SpVc WDR neurons in inflamed rats significantly decreased after quercetin or diclofenac administration. Similarly, quercetin or diclofenac restored the expanded mean receptive field size in inflamed rats to control levels. In this study, the combination of three anesthetic agents did not result in any obvious "noxious pinch-evoked after discharges" in CFA inflamed day 2 rat as described previously in pentobarbital-anesthetized rats. Together, these results suggest that administration of quercetin attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons via inhibition of the peripheral cyclooxygenase-2 signaling cascade and voltage-gated ion channels. These findings support the proposed potential of quercetin as a therapeutic agent in complementary alternative medicine strategies for preventing trigeminal inflammatory mechanical hyperalgesia.
Collapse
Affiliation(s)
- Haruka Itou
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Ryou Toyota
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| |
Collapse
|