1
|
Liu Y, Tanaka E. Pathogenesis, Diagnosis, and Management of Trigeminal Neuralgia: A Narrative Review. J Clin Med 2025; 14:528. [PMID: 39860534 PMCID: PMC11765769 DOI: 10.3390/jcm14020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Trigeminal neuralgia (TN) is an excruciating neurological disorder characterized by intense, stimulus-induced, and transient facial stabbing pain. The classification of TN has changed as a result of new discoveries in the last decade regarding its symptomatology, pathogenesis, and management. Because different types of facial pain have different clinical therapy and neuroimaging interpretations, a precise diagnosis is essential. Diagnosis should include magnetic resonance imaging with specific sequences to rule out secondary causes and to identify possible neurovascular contact. The purpose of demonstrating a neurovascular contact is to aid in surgical decision making, not to validate a diagnosis. Microvascular decompression is the first-line procedure for individuals who do not respond to medical management, whereas carbamazepine and oxcarbazepine are the preferred medications for long-term care. New developments in animal models and neuroimaging methods will shed more light on the biology and etiology of TN. This paper reviews the pathogenesis, the clinical features, the diagnosis, and the management of TN. Furthermore, the potential role of low-intensity pulsed ultrasound in neurological disorders is discussed.
Collapse
Affiliation(s)
- Yao Liu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China;
| | - Eiji Tanaka
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China;
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| |
Collapse
|
2
|
Akhlaghpasand M, Tavanaei R, Hosseinpoor M, Heidari R, Mohammadi I, Chamanara M, Hosseinpour M, Zali A, Mosaed R, Oraee-Yazdani S. Effects of Combined Intrathecal Mesenchymal Stem Cells and Schwann Cells Transplantation on Neuropathic Pain in Complete Spinal Cord Injury: A Phase II Randomized Active-Controlled Trial. Cell Transplant 2025; 34:9636897241298128. [PMID: 39874104 PMCID: PMC11775971 DOI: 10.1177/09636897241298128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Neuropathic pain is a debilitating complication following spinal cord injury (SCI). Currently, effective treatments for SCI-induced neuropathic pain are highly lacking. This clinical trial aimed to investigate the efficacy of combined intrathecal injection of Schwann cells (SCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in improving SCI-induced neuropathic pain. This study was a parallel-group, randomized, open-label, active-controlled phase II trial with two arms, including treatment and control groups. Patients with complete SCI-induced neuropathic pain in the treatment group received a single combined intrathecal injection of BMSCs and SCs. Study outcome measures were International SCI Pain Basic Data Set (ISCIPBDS) and World Health Organization (WHO) Quality of Life Assessment Instrument (WHOQOL-BREF). A total of 37 (55.2%) and 30 (44.8%) patients in the treatment and control groups were followed up for 6 months, respectively. Significant reductions in mean scores of interference items in the treatment group, including daily activities (P < 0.001), mood (P < 0.001), and sleep (P < 0.001), were found at 6 months after the injection compared with the control one. Similarly, pain frequency (P = 0.002), mean (P = 0.001), and worst (P = 0.001) numeric rating scale (NRS) pain intensity scores showed significant reductions in the treatment group after 6 months compared with the control one. Based on multiple regression analysis controlled for potential confounders, significant associations between changes in all outcome measures over the study period and the treatment group were found. This clinical trial indicated the efficacy of combined cell therapy in improving the neuropathic pain and quality of life in complete SCI patients. Future investigations should evaluate the effects of combination of this strategy with other existing therapies for SCI-induced neuropathic pain. This clinical trial was also registered prospectively at the Iranian Registry of Clinical Trials (IRCT20200502047277N8).
Collapse
Affiliation(s)
| | - Roozbeh Tavanaei
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maede Hosseinpoor
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ida Mohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Melika Hosseinpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abu El-Hamd M, Abd Elaa SG, Abdelwahab A. Possible Role of Platelet-Rich Plasma in the Treatment of Patients with Postherpetic Neuralgia: A Prospective, Single-Arm, Open-Label Clinical Study. Indian Dermatol Online J 2024; 15:986-991. [PMID: 39640447 PMCID: PMC11616926 DOI: 10.4103/idoj.idoj_86_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 12/07/2024] Open
Abstract
Background Currently, no treatment can fully and finally treat postherpetic neuralgia (PHN). Aim and Objectives This study aimed to evaluate the possible efficacy of autologous intralesional platelet-rich plasma (PRP) injection in treating patients with PHN. Materials and Methods A prospective, single-arm, open-label clinical study was conducted on 45 patients with PHN attending the Dermatology Outpatient Clinics of Sohag University Hospital, Egypt, between November 2019 and November 2021. Patients were subjected to full clinical general and dermatologic examinations. Patient's assessment included severity of pain through visual analogue scale (VAS), numerical rating scale (NRS), and verbal rating scale (VRS), in addition to Medical Outcomes Study 36 Item Short-Form (SF-36). Patients were treated by autologous PRP injection every 2 weeks for 2 months (4 sessions). Patients were evaluated before every session and 3- months after the last session. Results There was a significantly decreased VAS, NRS, VRS, and SF-36 questionnaire values in the last session and three months after the last session. There was a highly significant moderate correlation between both scales (VAS and VRS) and patient's age in years and who have aggravating factors. Likewise, there was a significant moderate positive correlation between scales (VAS and VRS) and the disease duration, medical co-morbidities, and associated myalgia. Limitations These findings require further confirmations on more inclusive large-sized multicenter, randomized, placebo-controlled, clinical trials with longer follow-up. Conclusion This clinical pilot study concluded that autologous intralesional PRP injection was an effective therapeutic option for patients with PHN.
Collapse
Affiliation(s)
- Mohammed Abu El-Hamd
- Dermatology, Venereology, and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Shereen G. Abd Elaa
- Dermatology, Venereology, and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ashraf Abdelwahab
- Dermatology, Venereology, and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
4
|
Claessens AAE, Vriend L, Ovadja ZN, Harmsen MC, van Dongen JA, Coert JH. Therapeutic Efficacy of Adipose Tissue-Derived Components in Neuropathic Pain: A Systematic Review. Bioengineering (Basel) 2024; 11:992. [PMID: 39451368 PMCID: PMC11504850 DOI: 10.3390/bioengineering11100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Neuropathic pain results from a defect in the somatosensory nervous system caused by a diversity of etiologies. The effect of current treat-ment with analgesics and surgery is limited. Studies report the therapeutic use of adipose tissue-derived components to treat neuropathic pain as a new treatment modality. OBJECTIVE The aim of this systematic review was to investigate the therapeutic clinical efficacy of adipose tissue-derived components on neuro-pathic pain. METHODS PubMed, Medline, Cochrane and Embase databases were searched until August 2023. Clinical studies assessing neuropathic pain after autologous fat grafting or the therapeutic use of adipose tissue-derived com-ponents were included. The outcomes of interest were neuropathic pain and quality of life. RESULTS In total, 433 studies were identified, of which 109 dupli-cates were removed, 324 abstracts were screened and 314 articles were excluded. In total, ten studies were included for comparison. Fat grafting and cellular stromal vascular fraction were used as treatments. Fat grafting indications were post-mastectomy pain syndrome, neuromas, post-herpetic neuropathy, neuro-pathic scar pain and trigeminal neuropathic pain. In seven studies, neuropathic pain levels decreased, and overall, quality of life did not improve. CONCLUSIONS The therapeutic efficacy of adipose tissue-derived components in the treatment of neuropathic pain remains unclear due to the few performed clinical trials with small sample sizes for various indications. Larger and properly designed (randomized) controlled trials are required.
Collapse
Affiliation(s)
- Anouk A. E. Claessens
- Department of Plastic, Reconstructive and Hand Surgery, Medisch Centrum Leeuwarden, 8934 AD Leeuwarden, The Netherlands;
| | - Linda Vriend
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Zachri N. Ovadja
- Department of Plastic, Reconstructive and Hand Surgery, Medisch Centrum Leeuwarden, 8934 AD Leeuwarden, The Netherlands;
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Joris. A. van Dongen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| |
Collapse
|
5
|
D'Souza RS, Her YF, Hussain N, Karri J, Schatman ME, Calodney AK, Lam C, Buchheit T, Boettcher BJ, Chang Chien GC, Pritzlaff SG, Centeno C, Shapiro SA, Klasova J, Grider JS, Hubbard R, Ege E, Johnson S, Epstein MH, Kubrova E, Ramadan ME, Moreira AM, Vardhan S, Eshraghi Y, Javed S, Abdullah NM, Christo PJ, Diwan S, Hassett LC, Sayed D, Deer TR. Evidence-Based Clinical Practice Guidelines on Regenerative Medicine Treatment for Chronic Pain: A Consensus Report from a Multispecialty Working Group. J Pain Res 2024; 17:2951-3001. [PMID: 39282657 PMCID: PMC11402349 DOI: 10.2147/jpr.s480559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Brennan J Boettcher
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Scott G Pritzlaff
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay S Grider
- Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ryan Hubbard
- Department of Sports Medicine, Anderson Orthopedic Clinic, Arlington, VA, USA
| | - Eliana Ege
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Shelby Johnson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Max H Epstein
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alexandra Michelle Moreira
- Department of Physical Medicine & Rehabilitation, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health - Bridgeport Hospital, Bridgeport, CT, USA
| | - Yashar Eshraghi
- Department of Anesthesiology & Critical Care Medicine, Ochsner Health System, New Orleans, LA, USA
| | - Saba Javed
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Newaj M Abdullah
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sudhir Diwan
- Department of Pain Medicine, Advanced Spine on Park Avenue, New York City, NY, USA
| | | | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy R Deer
- Department of Anesthesiology and Pain Medicine, West Virginia University School of Medicine, Charleston, WV, USA
| |
Collapse
|
6
|
Jaleh Z, Rahimi B, Shahrezaei A, Sohani M, Sagen J, Nasirinezhad F. Exploring the Therapeutic Potential of Mesenchymal Stem Cells-derived conditioned medium: An In-depth Analysis of Pain Alleviation, Spinal CCL2 Levels, and Oxidative Stress. Cell Biochem Biophys 2024; 82:2977-2988. [PMID: 39031248 DOI: 10.1007/s12013-024-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Neuropathic pain, a debilitating condition, remains a significant challenge due to the lack of effective therapeutic solutions. This study aimed to evaluate the potential of mesenchymal stromal cell (MSC)-derived conditioned medium in alleviating neuropathic pain induced by sciatic nerve compression injury in adult male rats. Forty Wistar rats were randomly assigned to four groups: control, nerve injury, nerve injury with intra-neural injection of conditioned medium, and nerve injury with intra-neural injection of culture medium. Following sciatic nerve compression, the respective groups received either 10 µl of conditioned medium from amniotic fluid-derived stem cells or an equal volume of control culture medium. Behavioral tests for cold allodynia, mechanical allodynia, and thermal hyperalgesia were conducted, and the spinal cord was analyzed using Western Blot and oxidative stress assays. The behavioral experiments showed a decrease in mechanical hyperalgesia and cold allodynia in the group receiving conditioned medium compared to the injury group and the control medium group. Western blot data revealed a decrease in the expression of the CCL2 protein and an increase in GAD65. Oxidative stress tests also showed increased levels of SOD and glutathione in conditioned media-treated animals compared to animals with nerve injury. The findings suggest that conditioned medium derived from amniotic fluid-derived stem cells can effectively reduce neuropathic pain, potentially through the provision of supportive factors that mitigate oxidative stress and inflammation in the spinal cord.
Collapse
Affiliation(s)
- Zeinab Jaleh
- Department of Physiology, School of Medicine, Iran Univerisity of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran Univerisity of Medical Sciences, Tehran, Iran
| | - Aidin Shahrezaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sohani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jacqueline Sagen
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran Univerisity of Medical Sciences, Tehran, Iran.
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Center of Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Jacobs T, Mahoney C, Mohammed S, Ziccardi V. Evaluating Stromal Vascular Fraction As a Treatment for Peripheral Nerve Regeneration: A Scoping Review. J Oral Maxillofac Surg 2024; 82:771-781. [PMID: 38621666 DOI: 10.1016/j.joms.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE This study aims to investigate the potential of stromal vascular fraction (SVF) for peripheral nerve regeneration. METHODS A scoping review of Scopus and PubMed databases was conducted. Inclusion criteria were human or animal studies exploring the use of SVF for peripheral nerve regeneration. Studies were categorized by assessed outcomes: pain assessment, neural integrity, muscle recovery, and functional recovery. Level of evidence and study quality were assessed. RESULTS Nine studies met the inclusion criteria. SVF injection in humans with trigeminal neuropathic pain reduced pain scores from 7.5 ± 1.58 to 4.3 ± 3.28. SVF injection improved sensation in humans with leprosy neuropathy. Repairing transected rat sciatic nerves with SVF-coated nerve autografts improved wet muscle weight ratios (0.65 ± 0.11 vs 0.55 ± 0.06) and sciatic functional index (SFI) scores (-68.2 ± 9.2 vs -72.5 ± 8.9). Repairing transected rat sciatic nerves with SVF-coated conduits increased the ratio of gastrocnemius muscle weights (RGMW) (7-10% improvement), myelinated fibers (1,605 ± 806.2 vs 543.6 ± 478.66), and myelin thickness (5-20% increase). Repairing transected rat facial nerves with SVF-coated conduits improved whisker motion (9.22° ± 0.65° vs 1.90° ± 0.84°) and myelin thickness (0.57 μm ± 0.17 vs 0.45 μm ± 0.14 μm). Repairing transected rat sciatic nerves with SVF-coated nerve allografts improved RGMW (85 vs 50%), SFI scores (-20 to -10 vs -40 to -30), and Basso, Beatie, and Bresnahan locomotor scores (18 vs 15). All metrics mentioned above were statistically significant. The human studies were level 4 evidence due to being case series, while animal studies were the lowest level of evidence. CONCLUSION Despite initial promising results, the low-level evidence from the included studies warrants further investigation.
Collapse
Affiliation(s)
- Tyler Jacobs
- Resident, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ.
| | | | - Saad Mohammed
- B.A. Candidate, New Jersey Institute of Technology, Newark, NJ
| | - Vincent Ziccardi
- Professor, Chair, and Associate Dean for Hospital Affairs, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ
| |
Collapse
|
8
|
Kataria S, Patel U, Yabut K, Patel J, Patel R, Patel S, Wijaya JH, Maniyar P, Karki Y, Makrani MP, Viswanath O, Kaye AD. Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options. Curr Pain Headache Rep 2024; 28:321-333. [PMID: 38386244 PMCID: PMC11126447 DOI: 10.1007/s11916-024-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW This manuscript summarizes novel clinical and interventional approaches in the management of chronic, nociceptive, and neuropathic pain. RECENT FINDINGS Pain can be defined as a feeling of physical or emotional distress caused by an external stimulus. Pain can be grouped into distinct types according to characteristics including neuropathic pain, which is a pain caused by disease or lesion in the sensory nervous system; nociceptive pain, which is pain that can be sharp, aching, or throbbing and is caused by injury to bodily tissues; and chronic pain, which is long lasting or persisting beyond 6 months. With improved understanding of different signaling systems for pain in recent years, there has been an upscale of methods of analgesia to counteract these pathological processes. Novel treatment methods such as use of cannabinoids, stem cells, gene therapy, nanoparticles, monoclonal antibodies, and platelet-rich plasma have played a significant role in improved strategies for therapeutic interventions. Although many management options appear to be promising, extensive additional clinical research is warranted to determine best practice strategies in the future for clinicians.
Collapse
Affiliation(s)
- Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
- LSU Health Science Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71104, USA.
| | | | - Kevin Yabut
- Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - Jayshil Patel
- Benchmark Physical Therapy, Upstream Rehabilitation, Knoxville, TN, 37920, USA
| | - Rajkumar Patel
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Savan Patel
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | | | - Pankti Maniyar
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Yukti Karki
- Kathmandu Medical College and Teaching Hospital, Kathmandu, 44600, Nepal
| | - Moinulhaq P Makrani
- Department of Pharmacology, Parul Institute of Medical Science and Research, Waghodia, Gujarat, 291760, India
| | - Omar Viswanath
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
| |
Collapse
|
9
|
Yu YQ, Wang H. Imbalance of Th1 and Th2 Cytokines and Stem Cell Therapy in Pathological Pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:88-101. [PMID: 36573059 DOI: 10.2174/1871527322666221226145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
The pathophysiological importance of T helper 1 (Th1) and Th2 cell cytokines in pathological pain has been highly debated in recent decades. However, the analgesic strategy targeting individual cytokines still has a long way to go for clinical application. In this review, we focus on the contributions of Th1 cytokines (TNF-α, IFN-γ, and IL-2) and Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in rodent pain models and human pain-related diseases. A large number of studies have shown that Th1 and Th2 cytokines have opposing effects on pain modulation. The imbalance of Th1 and Th2 cytokines might determine the final effect of pain generation or inhibition. However, increasing evidence indicates that targeting the individual cytokine is not sufficient for the treatment of pathological pain. It is practical to suggest a promising therapeutic strategy against the combined effects of Th1 and Th2 cytokines. We summarize the current advances in stem cell therapy for pain-related diseases. Preclinical and clinical studies show that stem cells inhibit proinflammatory cytokines and release enormous Th2 cytokines that exhibit a strong analgesic effect. Therefore, a shift of the imbalance of Th1 and Th2 cytokines induced by stem cells will provide a novel therapeutic strategy against intractable pain. It is extremely important to reveal the cellular and molecular mechanisms of stem cell-mediated analgesia. The efficiency and safety of stem cell therapy should be carefully evaluated in animal models and patients with pathological pain.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
10
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
11
|
Ren K, Vickers R, Murillo J, Ruparel NB. Revolutionizing orofacial pain management: the promising potential of stem cell therapy. FRONTIERS IN PAIN RESEARCH 2023; 4:1239633. [PMID: 38028430 PMCID: PMC10679438 DOI: 10.3389/fpain.2023.1239633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Orofacial pain remains a significant health issue in the United States. Pain originating from the orofacial region can be composed of a complex array of unique target tissue that contributes to the varying success of pain management. Long-term use of analgesic drugs includes adverse effects such as physical dependence, gastrointestinal bleeding, and incomplete efficacy. The use of mesenchymal stem cells for their pain relieving properties has garnered increased attention. In addition to the preclinical and clinical results showing stem cell analgesia in non-orofacial pain, studies have also shown promising results for orofacial pain treatment. Here we discuss the outcomes of mesenchymal stem cell treatment for pain and compare the properties of stem cells from different tissues of origin. We also discuss the mechanism underlying these analgesic/anti-nociceptive properties, including the role of immune cells and the endogenous opioid system. Lastly, advancements in the methods and procedures to treat patients experiencing orofacial pain with mesenchymal stem cells are also discussed.
Collapse
Affiliation(s)
- Ke Ren
- Department of Pain and Neural Sciences, University of Maryland, Baltimore, MD, United States
| | - Russel Vickers
- Clinical Stem Cells Pty Ltd., Sydney, NSW, Australia
- Oral Health Center, School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Glycomics, Griffith University Queensland, Southport, QLD, Australia
| | - Josue Murillo
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
de Castro JC, Wang D, Strakowski J, Emril DR, Chang Chien GC. Alpha-2 macroglobulin for the treatment of neuroma pain in the stump of a below-knee amputee patient. Pain Manag 2023; 13:335-341. [PMID: 37551540 DOI: 10.2217/pmt-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
This case report describes the successful treatment of neuroma pain in the setting of below knee amputations using alpha-2-macroglobulin (A2M). A 34-year-old female patient presented with 9 months of stump pain despite conservative treatment. The exam revealed persistent pain through rest periods and weight-bearing status during therapy. Ultrasound showed neuroma formation with neovascularization. The patient underwent two A2M hydrodissection treatments, 2 weeks apart. The patient reported significant pain relief. Ultrasound showed decreases in neovascularization and cross-sectional area of the neuroma. The patient was able to ambulate pain-free for 2 years and reported no pain since. A2M may be a treatment for patients with neuroma pain in the setting of amputations.
Collapse
Affiliation(s)
| | | | - Jeffrey Strakowski
- The Ohio State University, Department of Physical Medicine & Rehabilitation, Columbus, OH, 43214, USA
| | - Dessy R Emril
- Medical Faculty of Universitas Syiah Kuala, Aceh, Indonesia
| | | |
Collapse
|
13
|
Honda Pazili T. Treatment of postherpetic neuralgia by bone marrow aspirate injection: A case report. World J Clin Cases 2023; 11:3619-3624. [PMID: 37383904 PMCID: PMC10294184 DOI: 10.12998/wjcc.v11.i15.3619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is the most frequent and a difficult-to-treat complication of herpes zoster (HZ). Its symptoms include allodynia, hyperalgesia, burning, and an electric shock-like sensation stemming from the hyperexcitability of damaged neurons and varicella-zoster virus-mediated inflammatory tissue damage. HZ-related PHN has an incidence of 5%–30%, and in some patients, the pain is intolerable and can lead to insomnia or depression. In many cases, the pain is resistant to pain-relieving drugs, necessitating radical therapy.
CASE SUMMARY We present the case of a patient with PHN whose pain was not cured by conventional treatments, such as analgesics, block injections, or Chinese medicines, but by bone marrow aspirate concentrate (BMAC) injection containing bone marrow mesenchymal stem cells. BMAC has already been used for joint pains. However, this is the first report on its use for PHN treatment.
CONCLUSION This report reveals that bone marrow extract can be a radical therapy for PHN.
Collapse
Affiliation(s)
- Takahiro Honda Pazili
- Regenerative Medicine, Department of Cell Therapy, Japan Tokyo Stem Cell Transplant Research Institute, Tokyo 104-0061, Japan
| |
Collapse
|
14
|
Lee H, Tae G, Hwang S, Wee S, Ha Y, Lee HL, Shin D. Heparin-Based Hydrogel Micropatches with Human Adipose-Derived Stem Cells: A Promising Therapeutic Approach for Neuropathic Pain Relief. Biomedicines 2023; 11:1436. [PMID: 37239107 PMCID: PMC10216470 DOI: 10.3390/biomedicines11051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study explores the therapeutic efficacy of heparin-based hydrogel micropatches containing human adipose-derived stem cells (hASCs) in treating neuropathic pain caused by nerve damage. Our results showed that hASCs exhibited neuroregenerative and pain-relieving effects when used with heparin-based hydrogel micropatches in the neuropathic pain animal model. The use of this combination also produced enhanced cell viability and nerve regeneration. We conducted various neurological behavioral tests, dynamic plantar tests, histological examinations, and neuroelectrophysiological examinations to confirm the therapeutic effect. Our findings suggest that this approach could maximize therapeutic efficacy and improve the quality of life for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - GiYoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea;
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - DongAh Shin
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| |
Collapse
|
15
|
Sirait SP, Bramono K, Menaldi SL, Pawitan JA, Indriatmi W, Aninditha T. Effect of adipose derived stromal vascular fraction on leprosy neuropathy: A Preliminary report. PLoS Negl Trop Dis 2023; 17:e0010994. [PMID: 36595533 PMCID: PMC9838844 DOI: 10.1371/journal.pntd.0010994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/13/2023] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Adipose derived stromal vascular fraction (SVF) contains a heterogeneous population of mononuclear cells, progenitor cells and about 1-10% are mesenchymal stromal cells. These cells are an ideal candidate for regenerative medicine for peripheral neuropathy. Leprosy is a disabling disorder with neuropathy, usually with consequences of permanent disability of the extremities. We conducted a preliminary study to evaluate the cell yield, its characteristics and clinical outcomes after SVF injections in four leprosy patients. METHODS Four post leprosy patients were recruited and evaluated for sensory testing (warm detection, cold detection, vibration, pain and sensation) on the ulnar area of the hand. Liposuction was done and adipose tissue was processed into SVF with a closed system and injected to the ulnar area of the hand at the dorsal and palmar side. Evaluation of sensory testing was done after 3 days, 1 week, 1 month and 3 months following SVF injection. SVF was also characterized using flow cytometry, cell counting, sterility and presence of mycobacteria. RESULTS The results showed that leprosy patients had a low count of mesenchymal cells and a high amount of CD34/CD45 positive cells. One patient was positive for mycobacteria from his adipose tissue and SVF. Sensory examination after SVF injection showed an improvement in temperature and pain sensation in the palmar and superficial branch. Meanwhile, touch sensation improved on the dorsal branch, and there was no improvement for vibration in all patients. CONCLUSIONS The results showed that SVF had a potential to improve sensory loss in leprosy patients.
Collapse
Affiliation(s)
- Sondang P. Sirait
- Dermatovenerology Department, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia,* E-mail:
| | - Kusmarinah Bramono
- Dermatovenerology Department, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Sri Linuwih Menaldi
- Dermatovenerology Department, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia,Stem Cells Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia,Stem Cells and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wresti Indriatmi
- Dermatovenerology Department, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Tiara Aninditha
- Neurology Department, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
16
|
Cheng J. Cell-Based Therapies in Clinical Pain Management. NEUROIMMUNE INTERACTIONS IN PAIN 2023:273-286. [DOI: 10.1007/978-3-031-29231-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Yousefifard M, Sarveazad A, Janzadeh A, Behroozi Z, Nasirinezhad F. Pain Alleviating Effect of Adipose-Derived Stem Cells Transplantation on the Injured Spinal Cord: A Behavioral and Electrophysiological Evaluation. J Stem Cells Regen Med 2022; 18:53-63. [PMID: 36713791 PMCID: PMC9837693 DOI: 10.46582/jsrm.1802010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Few studies are conducted on the efficacy of human adipose-derived stem cells (ADSCs) in spinal cord injury (SCI) management and electrophysiological changes in the spinal cord. Therefore, the present study aimed to determine the effect of ADSCs on neuropathic pain, motor function recovery, and electrophysiology assessment. For the purpose of this study, adult male Wistar rats (weight: 140-160 gr, n = 42) were randomly allocated into five groups namely intact animals, sham-operated, SCI non-treated animals, vehicle-treated (culture media), and ADSCs treated groups. One week after clips compression SCI induction, about 1×106 cells were transplanted into the spinal cord. As well, both neuropathic pain (allodynia and hyperalgesia) and motor function were measured weekly. Cavity size, ADSCs survival, and electrophysiology assessments were measured at the end of the eighth week. The transplantation of ADSCs resulted in a significant improvement in the locomotion of SCI animals (p<0.0001), mechanical allodynia (p<0.0001), cold allodynia (p<0.0001), mechanical hyperalgesia (p<0.0001), and thermal hyperalgesia (p<0.0001). The cavity size was significantly smaller among the ADSCs-treated animals (p <0.0001). The single-unit recording showed that the transplantation of ADSCs decreased wide dynamic range (WDR) in neurons and it evoked potential in response to receiving signals from Aβ (p<0.0001) and Aδ (p=0.003) C-fiber (p<0.0001) neurons. Post-discharge recorded from WDR neurons decreased after the transplantation of ADSCs (p<0.0001) and wind up in the ADSCs-treated group was lower than that of the SCI group (p=0.003). Our results showed that the transplantation of ADSCs could significantly alleviate neuropathic pain, enhance motor function recovery, and improve electrophysiology findings after SCI.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran,Nursing care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Cellular and molecular research center, Iran University of Medical Sciences, Tehran, Iran,Centre for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Farinaz Nasirinezhad, Cellular, and molecular research center, Iran University of Medical Sciences, Tehran, Iran., Tel/Fax: +982188622709.
| |
Collapse
|
18
|
Kan H, Fan L, Gui X, Li X, Yang S, Huang Y, Chen L, Shen W. Stem Cell Therapy for Neuropathic Pain: A Bibliometric and Visual Analysis. J Pain Res 2022; 15:1797-1811. [PMID: 35769691 PMCID: PMC9236174 DOI: 10.2147/jpr.s365524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neuropathic pain is intractable and current treatment modalities are ineffective to cure this intractable pain, which has become a global problem. In recent years, there have been an increasing number of studies on stem cell therapy for neuropathic pain that have shown enormous potential. Using a visual analysis approach of the existing literature on stem cell therapy for neuropathic pain, we hope to understand the current research status and hot issues in this field and to provide valuable predictions for future research in this field. Methods We used Citespace software to visually analyze 291 articles and reviews indexed by the Web of Science Core Collection Database exploring stem cell-based treatment of neuropathic pain from 1995 to 2021. The Gunnmap online world map evaluated the number of countries and regional articles separately. Microsoft Excel 2016 was used to generate a graph of trends in annual publications. Results Visualization analysis revealed that the number of publications has increased yearly. The top three countries in terms of number of articles published are United States, China, and Japan. Analysis of highly co-cited articles revealed that the contents of these articles primarily involved the expression of IL-1β, IL-10, NPY, TRPA1, p-p38, p-ERK1/2, TGF-β, PKCδ, CaMKIIɑ, P2X4, P2X7 and TNF-ɑ. Keywords and citation burst analysis demonstrated that activation, regeneration, chemotherapy, and expression are likely the research hotspots and future directions of stem cell research in neuropathic pain. Conclusion Stem cell therapy may be a potential means of future treatment of neuropathic pain. The study of the mechanisms underlying stem cell therapy for neuropathic pain is still a focus of future research.
Collapse
Affiliation(s)
- Houming Kan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu, People's Republic of China
| | - Lijun Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaodie Gui
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoqiang Li
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Sen Yang
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yuting Huang
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Liping Chen
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Wen Shen
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Casadei M, Fiore E, Rubione J, María Domínguez L, Florencia Coronel M, Leiguarda C, García M, Mazzolini G, Villar MJ, Montaner A, Constandil L, Romero-Sandoval A, Brumovsky PR. IMT504 blocks allodynia in rats with spared nerve injury by promoting the migration of mesenchymal stem cells and by favoring an anti-inflammatory milieu at the injured nerve. Pain 2022; 163:1114-1129. [PMID: 34711765 PMCID: PMC8920950 DOI: 10.1097/j.pain.0000000000002476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT IMT504, a noncoding, non-CpG oligodeoxynucleotide, modulates pain-like behavior in rats undergoing peripheral nerve injury, through mechanisms that remain poorly characterized. Here, we chose the spared nerve injury model in rats to analyze the contribution of mesenchymal stem cells (MSCs) in the mechanisms of action of IMT504. We show that a single subcutaneous administration of IMT504 reverses mechanical and cold allodynia for at least 5 weeks posttreatment. This event correlated with long-lasting increases in the percentage of MSCs in peripheral blood and injured sciatic nerves, in a process seemingly influenced by modifications in the CXCL12-CXCR4 axis. Also, injured nerves presented with reduced tumor necrosis factor-α and interleukin-1β and increased transforming growth factor-β1 and interleukin-10 protein levels. In vitro analysis of IMT504-pretreated rat or human MSCs revealed internalized oligodeoxynucleotide and confirmed its promigratory effects. Moreover, IMT504-pretreatment induced transcript expression of Tgf-β1 and Il-10 in MSCs; the increase in Il-10 becoming more robust after exposure to injured nerves. Ex vivo exposure of injured nerves to IMT504-pretreated MSCs confirmed the proinflammatory to anti-inflammatory switch observed in vivo. Interestingly, the sole exposure of injured nerves to IMT504 also resulted in downregulated Tnf-α and Il-1β transcripts. Altogether, we reveal for the first time a direct association between the antiallodynic actions of IMT504, its promigratory and cytokine secretion modulating effects on MSCs, and further anti-inflammatory actions at injured nerves. The recapitulation of key outcomes in human MSCs supports the translational potential of IMT504 as a novel treatment for neuropathic pain with a unique mechanism of action involving the regulation of neuroimmune interactions.
Collapse
Affiliation(s)
- Mailín Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Esteban Fiore
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Julia Rubione
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Luciana María Domínguez
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Mariana García
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Marcelo J. Villar
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología “Dr. César Milstein”, CONICET, Fundación Pablo Cassará, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| |
Collapse
|
20
|
Liu Y, Kano F, Hashimoto N, Xia L, Zhou Q, Feng X, Hibi H, Miyazaki A, Iwamoto T, Matsuka Y, Zhang Z, Tanaka E, Yamamoto A. Conditioned Medium From the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Neuropathic Pain in a Partial Sciatic Nerve Ligation Model. Front Pharmacol 2022; 13:745020. [PMID: 35431971 PMCID: PMC9009354 DOI: 10.3389/fphar.2022.745020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
In neuropathic pain (NP), injury or diseases of the somatosensory system often result in highly debilitating chronic pain. Currently, there is no effective drug for the complete and definitive treatment of NP. We investigated the therapeutic potential of conditioned medium (CM) derived from stem cells from human exfoliated deciduous teeth (SHED-CM) against NP using a mouse partial sciatic nerve ligation (PSL) model. Abnormal pain sensation, such as tactile allodynia and hyperalgesia, can be caused by PSL. In the behavioral test, intravenous administration of SHED-CM greatly improved the PSL-induced hypersensitivity. We found that treatment with SHED-CM resulted in the recruitment of M2 macrophages in the injured sciatic nerve and ipsilateral L4/L5 dorsal root ganglion and suppressed microglial activation in the spinal cord. Notably, specific depletion of the anti-inflammatory M2 macrophages by mannosylated-Clodrosome markedly reduced the antinociceptive effect of SHED-CM. Intravenous administration of CM from M2 induced by SHED-CM (M2-CM) ameliorated the PSL-induced hypersensitivity. We found that M2-CM directly suppressed the expression of nociceptive receptors as well as proinflammatory mediators in Schwann cells. Taken together, our data suggest that SHED-CM ameliorates NP through the induction of the analgesic anti-inflammatory M2 macrophages. Thus, SHED-CM may be a novel therapeutic candidate for NP.
Collapse
Affiliation(s)
- Yao Liu
- Department of Tissue Regeneration, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Fumiya Kano
- Department of Tissue Regeneration, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Linze Xia
- Department of Tissue Regeneration, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital, Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital, Nantong University, Nantong, China
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Miyazaki
- Pediatric Dentistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tsutomu Iwamoto
- Pediatric Dentistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Zhijun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Eiji Tanaka
- Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
21
|
Yan X, Liu Y, Yu S, Huang D, Hu R. Repair Effects of Bone Marrow Mesenchymal Stem Cells on Demyelination of Trigeminal Ganglion in Rats with Trigeminal Neuralgia. J Pain Res 2022; 15:613-622. [PMID: 35250305 PMCID: PMC8894102 DOI: 10.2147/jpr.s347907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The current study investigated the effects of bone marrow mesenchymal stem cells (BMSCs) on pain behavior in rats with trigeminal neuralgia induced by infraorbital nerve chronic constriction injury (ION-CCI), and the repair effects of BMSCs on pathological changes in trigeminal ganglion demyelination. Methods BMSCs or phosphate-buffered saline (PBS) alone were injected around trigeminal ganglion in ION-CCI rats via a rat brain stereotaxic apparatus. Mechanical pain threshold (von Frey test) and face grooming behavior were measured in each group. Recovery of demyelination of trigeminal ganglion was observed via electron microscopy 2 weeks later, and BMSC differentiation was observed via immunofluorescence. Results Rats in the BMSC group exhibited significant improvements in mechanical pain threshold and face grooming behavior compared with the PBS group. BMSCs could repair demyelinating changes in trigeminal ganglion in ION-CCI rats. Only cells expressing GFAP, S-100, and p75 were observed via immunofluorescence, and no PKH67-labeled BMSCs were observed in the trigeminal ganglion. No BMSC differentiation was observed in the trigeminal ganglion. Conclusion Injection of BMSCs around the trigeminal ganglion could relieve trigeminal neuralgia effectively and repair trigeminal ganglion demyelination. No differentiation of BMSCs injected around the trigeminal ganglion into Schwann cells was observed. The mechanism of trigeminal neuralgia demyelination repair requires further investigation.
Collapse
Affiliation(s)
- Xuebin Yan
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yi Liu
- Department of Anesthesia, The First Hospital of Changsha, Changsha, People’s Republic of China
| | - Shanzi Yu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Correspondence: Rong Hu, Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China, Tel +86 18973162969, Email
| |
Collapse
|
22
|
OUP accepted manuscript. PAIN MEDICINE 2022; 23:1733-1749. [DOI: 10.1093/pm/pnac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022]
|
23
|
Bashford G, Tan SX, McGree J, Murdoch V, Nikles J. Comparing pregabalin and gabapentin for persistent neuropathic pain: A protocol for a pilot N-of-1 trial series. Contemp Clin Trials Commun 2021; 24:100852. [PMID: 34754981 PMCID: PMC8556752 DOI: 10.1016/j.conctc.2021.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Evidence-based management of neuropathic pain is commonly ineffective due to the large variability in response between cases. Patients often have to trial several drugs before finding one that provides adequate relief, leading to increased costs and worsened outcomes. There is thus a need for tools to guide and streamline prescribing decisions in neuropathic pain. N-of-1 trials provide a potentially precise and economical method of selecting between multiple interventions in an individual patient, and merit a feasibility assessment for use in clinical pain practice. Aims We aim to evaluate the feasibility of N-of-1 trials to compare pregabalin and gabapentin for individual presentations of neuropathic pain. Methods This is a double-blinded multiple crossover study, with recruitment from existing patients at an outpatient pain clinic in New South Wales, Australia. Participants will undergo three 4-week treatment pairs, comprising 2 weeks of pregabalin (150–600 mg/day) and 2 weeks of gabapentin (900–3600 mg/day), in an individually randomised order. Intervention doses will be derived from participants’ existing treatment dose. Medications will be taken orally three times daily. The primary outcome will be pain intensity; measures will be self-reported daily in patient diaries. After completing all three cycles, participants and their physicians will be presented with the results of the trial to form an informed decision about their treatment. Discussion As a stable yet debilitating condition, neuropathic pain is especially amenable to an N-of-1 study design. A successful trial would represent a significant quality of life improvement for the patient, possibly extending over the course of their lifetime.
Collapse
Affiliation(s)
- Guy Bashford
- Department of Rehabilitation Medicine, Port Kembla Hospital, Wollongong, Australia
| | - Samuel X Tan
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - James McGree
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - Jane Nikles
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Padda J, Khalid K, Zubair U, Al Hennawi H, Yadav J, Almanie AH, Mehta KA, Tasnim F, Cooper AC, Jean-Charles G. Stem Cell Therapy and Its Significance in Pain Management. Cureus 2021; 13:e17258. [PMID: 34540482 PMCID: PMC8445610 DOI: 10.7759/cureus.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Pain management has always been a challenging issue, which is why it has been a major focus of many rigorous studies. Chronic pain which typically lasts for more than three months is prevalent at an astounding rate of 11% to 19% of the adult population. Pain management techniques have gone through major advances in the last decade with no major improvement in the quality of life in affected populations. Recently there has been growing interest in the utilization of stem cells for pain management. Advancement of stem cell therapy has been noted for the past few years and is now being used in human clinical trials. Stem cell therapy has shown promising results in the management of neuropathic, discogenic back, osteoarthritis, and musculoskeletal pain. In this article, we will discuss the role of stem cells in the pain management of the aforementioned conditions, along with the mechanism, adverse effects, and risks of stem cell therapy.
Collapse
Affiliation(s)
- Jaskamal Padda
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Avalon University School of Medicine, Willemstad, CUW
| | | | - Ujala Zubair
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | - Jayant Yadav
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | | | | |
Collapse
|
25
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
26
|
Kotb HI, Abedalmohsen AM, Elgamal AF, Mokhtar DM, Abd-Ellatief RB. Preemptive Stem Cells Ameliorate Neuropathic Pain in Rats: A Central Component of Preemptive Analgesia. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:450-456. [PMID: 33588960 DOI: 10.1017/s1431927621000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study aims to investigate the efficacy of intravenously injected mesenchymal stem cells (MSCs) in treating neuropathic pain either before or after its induction by a chronic constriction injury (CCI) model. Rats were divided into four groups: control group, neuropathic group, and treated groups (pre and postinduction) with i.v. mononuclear cells (106 cell/mL). For these rats, experimental testing for both thermal and mechanical hyperalgesia was evaluated. The cerebral cortex of the rats was dissected, and immunohistochemical analysis using anti-proliferating cell nuclear antigen (PCNA), CD117, nestin, and glial fibrillary acidic protein was performed. Our results showed that a single injection of MSCs (either preemptive/or post-CCI) produced equipotent effects on allodynia, mechanical hyperalgesia, and thermal response. Immunohistochemical analysis showed that the stem cells have reached the cerebral cortex. The injected group with MSCs before CCI showing few stem cells expressed PCNA, CD117, and nestin in the cerebral cortex. The group injected with MSCs after CCI, showing numerous recently proliferated CD117-, nestin-, PCNA-positive stem cells in the cerebral cortex. In conclusion, our findings demonstrate that the most probable effect of i.v. stem cells is the central anti-inflammatory effect, which opens concerns about how stem cells circulating in systemic administration to reach the site of injury.
Collapse
Affiliation(s)
- Hassan I Kotb
- Department of anesthesia, intensive care and pain management, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Abualauon M Abedalmohsen
- Department of anesthesia, intensive care and pain management, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Ahmed F Elgamal
- Department of anesthesia, intensive care and pain management, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Doaa M Mokhtar
- Department of anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Rasha B Abd-Ellatief
- Department of pharmacology, Faculty of Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
27
|
Yang Q, Yao Y, Zhao D, Zou H, Lai C, Xiang G, Wang G, Luo L, Shi Y, Li Y, Yang M, Huang X. LncRNA H19 secreted by umbilical cord blood mesenchymal stem cells through microRNA-29a-3p/FOS axis for central sensitization of pain in advanced osteoarthritis. Am J Transl Res 2021; 13:1245-1256. [PMID: 33841653 PMCID: PMC8014348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the molecular mechanism of umbilical cord blood mesenchymal stem cells (UCBMSCs) in the treatment of advanced osteoarthritis pain. METHODS Normal healthy rats were selected to establish advanced osteoarthritis (OA) model, and the rats were randomly divided into control group, intravenous group, intracavitary group and intrathecal group. The intravenous group received intravenous injection of UCBMSCs, intracavitary group received intra-articular injection of UCBMSCs, and intrathecal group received subarachnoid injection of UCBMSCs. The pain behavior and serum pro-inflammatory factor levels were evaluated before and after treatment. microRNA-29a-3p and FOS mRNA in spinal dorsal horn was detected using qPCR, the phosphorylation of c-fos protein and NR1, NR2B, ERK and PKCg was detected using Western blot, and the level of LncRNA H19 was detected using qPCR. RESULTS LncRNA H19 was enriched in the exosomes of UCBMSCs. microRNA-29a-3p was the target gene of LncRNA H19, while FOS was the downstream target of microRNA-29a-3p. Pain and inflammation of rats in the intrathecal group improved best, and the phosphorylation levels of c-fos and NR1, NR2B, ERK and PKCg in the spinal dorsal horn of the intrathecal group decreased. LncRNA H19 regulated the central sensitization of astrocytes through microRNA-29a-3p/FOS axis. CONCLUSION Intrathecal injection of umbilical cord blood mesenchymal stem cells can improve the pain and central sensitization of advanced osteoarthritis through LncRNA H19/microRNA-29a-3p/FOS axis.
Collapse
Affiliation(s)
- Qinyan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Daqiang Zhao
- Department of Anesthesiology, Shanghai Jiahui International HospitalShanghai 200233, China
| | - Haibo Zou
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Guan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Le Luo
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610054, Sichuan, China
| | - Yan Li
- School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610054, Sichuan, China
| | - Maozhu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Xiaolun Huang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| |
Collapse
|
28
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. A Review on Stem Cell Therapy for Neuropathic Pain. Curr Stem Cell Res Ther 2021; 15:349-361. [PMID: 32056531 DOI: 10.2174/1574888x15666200214112908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex, chronic pain state that is heterogeneous in nature and caused by the consequence of a lesion or disease affecting the somatosensory system. Current medications give a long-lasting pain relief only in a limited percentage of patients also associated with numerous side effects. Stem cell transplantation is one of the attractive therapeutic platforms for the treatment of a variety of diseases, such as neuropathic pain. Here, the authors review the therapeutic effects of stem cell transplantation of different origin and species in different models of neuropathic pain disorders. Stem cell transplantation could alleviate the neuropathic pain; indeed, stem cells are the source of cells, which differentiate into a variety of cell types and lead trophic factors to migrate to the lesion site opposing the effects of damage. In conclusion, this review suggests that stem cell therapy can be a novel approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Stem Cells in the Treatment of Neuropathic Pain: Research Progress of Mechanism. Stem Cells Int 2020; 2020:8861251. [PMID: 33456473 PMCID: PMC7785341 DOI: 10.1155/2020/8861251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by somatosensory nervous system injury or disease. Its prominent symptoms are spontaneous pain, hyperalgesia, and allodynia, and the sense of pain is extremely strong. Owing to the complex mechanism, conventional painkillers lack effectiveness. Recently, research on the treatment of NP by stem cells is increasing and promising results have been achieved in preclinical research. In this review, we briefly introduce the neuropathic pain, the current treatment strategy, and the development of stem cell therapy, and we collected the experimental and clinical trial articles of many kinds of stem cells in the treatment of neuropathic pain from the past ten years. We analyzed and summarized the general efficacy and mechanism of stem cells in the treatment of neuropathic pain. We found that the multiple-mechanism approach was different from the single mechanism of routine clinical drugs; stem cells play a role in peripheral mechanism, central mechanism, and disinhibition of spinal cord level that lead to neuropathic pain, so they are more effective in analgesia and treatment of neuropathic pain.
Collapse
|
30
|
Sollie M, Thomsen JB, Sørensen JA. Autologous fat grafting seems to alleviate postherpetic neuralgia - a feasibility study investigating patient-reported levels of pain. J Plast Reconstr Aesthet Surg 2020; 74:350-356. [PMID: 32917571 DOI: 10.1016/j.bjps.2020.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/21/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a relatively common side effect after an outbreak of herpes zoster (HZ), characterized by chronic neuropathic dermal pain. No effective treatment exists today. Fat grafting has shown promise in alleviating neuropathic pain, yet the exact mechanism of action, at a biological level, is not yet known. We report on the first human study using autologous fat grafting for treating PHN. Our hypothesis was that fat grafting can alleviate pain and improve the quality of life (QoL) in patients suffering from PHN. If successful, this could be a safe, cost-effective alternative to analgesics. This safety and feasibility study aimed to investigate the possible pain-relieving effect of autologous fat grafting on PHN. METHODS Ten adult patients suffering from PHN underwent autologous fat grafting to a dermal area of neuralgia, with a 12-week follow up. The primary endpoint was patient-reported pain. Secondary endpoints were patient-reported changes in QoL, and the degree and quality of the neuropathic pain. RESULTS The pain was measured by using a visual analog scale (range: 0-10). We observed improvements in both the average and maximum level of pain with a reduction of (-4.0 ± 3.1) and (-5.1 ± 3.9), respectively, (Δ mean ± SD), P<0.05. All parameters investigating neuropathic pain were significantly reduced. No improvement was seen in the QoL. The average amount of fat grafted was 208 ml. We observed no serious adverse effects. CONCLUSION This study suggests that autologous fat grafting can relieve chronic pain resulting from HZ. The next step toward routine clinical translation is to perform a randomized, blinded, placebo-controlled trial with a more extended follow-up period.
Collapse
Affiliation(s)
- Martin Sollie
- Research Unit of Plastic Surgery, Odense University Hospital. J. B. Winsløvsvej 4, indgang 20, 1. sal. 5000 Odense C, Denmark.
| | - Jørn Bo Thomsen
- Research Unit of Plastic Surgery, Odense University Hospital. J. B. Winsløvsvej 4, indgang 20, 1. sal. 5000 Odense C, Denmark
| | - Jens Ahm Sørensen
- Research Unit of Plastic Surgery, Odense University Hospital. J. B. Winsløvsvej 4, indgang 20, 1. sal. 5000 Odense C, Denmark
| |
Collapse
|
31
|
Sollie M, Sørensen JA. Treatment of chronic post-herpetic neuralgia with autologous fat grafts: a first-in-the-world case report. Br J Pain 2019; 13:239-243. [PMID: 31656630 DOI: 10.1177/2049463718817570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 60-year-old woman suffering from severe chronic post-herpetic neuralgia (PHN) was treated with simple autologous fat grafting to the affected area of skin. Post-operatively, she reported a great improvement in her symptoms. The effect was stable throughout the 3-month follow-up period. This case report presents a first-in-the-world case of using fat grafting to treat chronic post-herpetic neuralgia and discusses the future potential of this as a primary treatment of this syndrome. This report presents partial data of a pilot study registered at clinicaltrials.org (ClinicalTrials.gov Identifier: NCT03584061).
Collapse
Affiliation(s)
- Martin Sollie
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
32
|
Caplan AI. There Is No "Stem Cell Mess". TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:291-293. [PMID: 30887883 PMCID: PMC6686685 DOI: 10.1089/ten.teb.2019.0049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023]
Abstract
IMPACT STATEMENT The impact should encourage continued research and clinical trials using mesenchymal stem cells.
Collapse
Affiliation(s)
- Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
33
|
Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther 2019; 10:183. [PMID: 31234929 PMCID: PMC6591829 DOI: 10.1186/s13287-019-1269-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Evidence has suggested that human adipose-derived stem cells (hADSCs) and low-level laser has neuroprotective effects on spinal cord injury (SCI). Therefore, the combined effect of the hADSCs and laser on neuregeneration and neuropathic pain after SCI was investigated. METHODS Forty-eight adult male Wistar rats with 200-250 g weight were used. Thirty minutes after compression, injury with laser was irritated, and 1 week following SCI, about 1 × 106 cells were transplanted into the spinal cord. Motor function and neuropathic pain were assessed weekly. Molecular and histological studies were done at the end of the fourth week. RESULTS The combined application of hADSCs and laser has significantly improved motor function recovery (p = 0.0001), hyperalgesia (p < 0.05), and allodynia (p < 0.05). GDNF mRNA expression was significantly increased in hADSCs and laser+hADSC-treated animals (p < 0.001). Finally, co-administration of hADSCs and laser has enhanced the number of axons around cavity more than other treatments (p < 0.001). CONCLUSIONS The results showed that the combination of laser and ADSCs could significantly improve the motor function and alleviate SCI-induced allodynia and hyperalgesia. Therefore, using a combination of laser and hADSCs in future experimental and translational clinical studies is suggested.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Dameni
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| |
Collapse
|
34
|
The Role of Fat Grafting in Alleviating Neuropathic Pain: A Critical Review of the Literature. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2216. [PMID: 31333948 PMCID: PMC6571323 DOI: 10.1097/gox.0000000000002216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 01/15/2023]
Abstract
Background Neuropathic pain is one of the more severe types of chronic pain and presents a great challenge as response to medical therapy remains often unpredictable. With the opioid epidemic and the search for ways to avoid narcotics, physicians are seeking other modalities to treat neuropathic pain. In recent years, surgeons have explored various surgical avenues to improve outcomes. The aim of this review was to evaluate the current clinical evidence regarding the efficacy of fat grafting for the treatment of neuropathic pain. Methods A critical review was conducted to examine the current clinical evidence of fat grafting as a therapy for neuropathic pain caused by neuromas, peripheral neuralgia, migraine and headaches, neuropathic scar pain, and postmastectomy pain syndrome. Results The precise mechanism role of fat grafting in modulating neuropathic pain remains unclear, but it appears to reduce pain levels through the anti-inflammatory effects of adipose-derived stem cells and mechanical cushioning by fat. Conclusions Fat grafting is an emerging therapy for chronic neuropathic pain of various etiologies. Although promising results have been reported, sample size and level of evidence of current studies are low. The encouraging results, however, are worthy of further clinical and scientific study. The minimally invasive nature of fat grafting and favorable risk profile make this an attractive therapy for neuropathic pain.
Collapse
|
35
|
Guo W, Imai S, Yang JL, Zou S, Li H, Xu H, Moudgil KD, Dubner R, Wei F, Ren K. NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief. Front Integr Neurosci 2018; 12:49. [PMID: 30459569 PMCID: PMC6232783 DOI: 10.3389/fnint.2018.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC's ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine signaling is critical to BMSCs' pain-relieving effect, we further evaluated a role of chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced BMSCs with Ccl4 shRNA, incubated BMSCs with RS 102895, a CCR2b antagonist, or maraviroc, a CCR5 antagonist. The antagonism of chemokines significantly reduced BMSC-induced upregulation of p65, suggesting that upregulation of p65 was related to BMSCs' pain-relieving effect. We then tested the effect of a selective NF-κB activation inhibitor, BAY 11-7082. The mechanical hyperalgesia of the rat was assessed with the von Frey method. In the pre-treatment experiment, BAY 11-7082 (2.5 and 25 pmol) was injected into the RVM at 2 h prior to BMSC infusion. Pretreatment with BAY 11-7082 attenuated BMSCs' antihyperalgesia, but post-treatment at 5 weeks post-BMSC was not effective. On the contrary, in TL rats receiving BAY 11-7082 without BMSCs, TL-induced hyperalgesia was attenuated, consistent with dual roles of NF-κB in pain hypersensitivity and BMSC-produced pain relief. These results indicate that the NF-κB signaling pathway in the descending circuitry is involved in initiation of BMSC-produced behavioral antihyperalgesia.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Satoshi Imai
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Clinical Pharmacology & Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Shiping Zou
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Huijuan Li
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Neurology, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huakun Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Kamal D Moudgil
- Department of Microbiology & Immunology, University of Maryland, Baltimore, MD, United States
| | - Ronald Dubner
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
36
|
Shparberg R, Vickers ER. Cell-based therapies and natural compounds for pain. AUST ENDOD J 2018. [DOI: 10.1111/aej.12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Shparberg
- Bosch Institute; Discipline of Physiology; School of Medical Sciences; University of Sydney; Sydney New South Wales Australia
| | - Edward R. Vickers
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
37
|
Vaquero J, Zurita M, Rico MA, Aguayo C, Fernández C, Gutiérrez R, Rodríguez-Boto G, Saab A, Hassan R, Ortega C. Intrathecal administration of autologous bone marrow stromal cells improves neuropathic pain in patients with spinal cord injury. Neurosci Lett 2018; 670:14-18. [PMID: 29366770 DOI: 10.1016/j.neulet.2018.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
Neuropathic pain (NP) is highly disabling, responds poorly to pharmacological treatment, and represents a significant cause of decreased quality of life in patients suffering from spinal cord injury (SCI). In recent years, cell therapy with autologous mesenchymal stromal cells (MSCs) has been considered as a potential therapeutic weapon in this entity. Ten patients suffering chronic SCI received 100 million MSCs into subarachnoid space by lumbar puncture (month 1 of the study) and this procedure was repeated at months 4 and 7 until reaching a total doses of 300 million MSCs. Intensity of NP was measured by standard numerical rating scale (VAS) from 0 to 10, recording scores previous to the first MSCs administration and monthly, until month 10 of follow-up. Months 1, 4, 7 and 10 of the study were selected as time points in order to a statistical analysis by the nonparametric Wilcoxon rank test. Our results showed significant and progressive improvement in NP intensity after the first administration of MSCs (p: 0.003). This study supports the benefit of intrathecal administration of autologous MSCs for the treatment of NP in patients with SCI.
Collapse
Affiliation(s)
- J Vaquero
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain.
| | - M Zurita
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - M A Rico
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - C Aguayo
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - C Fernández
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - R Gutiérrez
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - G Rodríguez-Boto
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - A Saab
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - R Hassan
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| | - C Ortega
- Service of Neurosurgery, Puerta de Hierro-Majadahonda Hospital, Autonomous University, Madrd, Spain
| |
Collapse
|
38
|
Autologous Adipose-Derived Stem Cells Reduce Burn-Induced Neuropathic Pain in a Rat Model. Int J Mol Sci 2017; 19:ijms19010034. [PMID: 29271925 PMCID: PMC5795984 DOI: 10.3390/ijms19010034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Burn scar pain is considered as neuropathic pain. The anti-inflammation and anti-neuroinflammation effects of adipose-derived stem cells (ASCs) were observed in several studies. We designed a study using a murine model involving the transplantation of autologous ASCs in rats subjected to burn injuries. The aim was to detect the anti-neuroinflammation effect of ASC transplantation and clarify the relationships between ASCs, scar pain, apoptosis and autophagy. Methods: We randomized 24 rats into 4 groups as followings: Group A and B, received saline injections and autologous transplantation of ASCs 4 weeks after sham burn, respectively; Group C and D, received saline injections and autologous transplantation 4 weeks after burn injuries. A designed behavior test was applied for pain evaluation. Skin tissues and dorsal horn of lumbar spinal cords were removed for biochemical analysis. Results: ASC transplantation significantly restored the mechanical threshold reduced by burn injury. It also attenuated local inflammation and central neuroinflammation and ameliorated apoptosis and autophagy in the spinal cord after the burn injury. Conclusion: In a rat model, autologous ASC subcutaneous transplantation in post-burn scars elicited anti-neuroinflammation effects locally and in the spinal cord that might be related to the relief of post-burn neuropathic pain and attenuated cell apoptosis. Thus, ASC transplantation post-burn scars shows the potential promising clinical benefits.
Collapse
|
39
|
Guo W, Imai S, Yang JL, Zou S, Watanabe M, Chu YX, Mohammad Z, Xu H, Moudgil KD, Wei F, Dubner R, Ren K. In vivo immune interactions of multipotent stromal cells underlie their long-lasting pain-relieving effect. Sci Rep 2017; 7:10107. [PMID: 28860501 PMCID: PMC5579160 DOI: 10.1038/s41598-017-10251-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Systemic infusion of bone marrow stromal cells (BMSCs), a major type of multipotent stromal cells, produces pain relief (antihyperalgesia) that lasts for months. However, studies have shown that the majority of BMSCs are trapped in the lungs immediately after intravenous infusion and their survival time in the host is inconsistent with their lengthy antihyperalgesia. Here we show that long-lasting antihyperalgesia produced by BMSCs required their chemotactic factors such as CCL4 and CCR2, the integrations with the monocytes/macrophages population, and BMSC-induced monocyte CXCL1. The activation of central mu-opioid receptors related to CXCL1-CXCR2 signaling plays an important role in BMSC-produced antihyperalgesia. Our findings suggest that the maintenance of antihypergesia can be achieved by immune regulation without actual engraftment of BMSCs. In the capacity of therapeutic use of BMSCs other than structural repair and replacement, more attention should be directed to their role as immune modulators and subsequent alterations in the immune system.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA
| | - Satoshi Imai
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA
| | - Shiping Zou
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA
| | - Mineo Watanabe
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA.,Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University, Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yu-Xia Chu
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zaid Mohammad
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA
| | - Huakun Xu
- Division of Biomaterials and Tissue Engineering, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology & Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA
| | - Ronald Dubner
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
40
|
Mauskop A, Rothaus KO. Stem Cells in the Treatment of Refractory Chronic Migraines. Case Rep Neurol 2017; 9:149-155. [PMID: 28690531 PMCID: PMC5498934 DOI: 10.1159/000477393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Autologous adipose-derived stromal vascular fraction (SVF), which is rich in mesenchymal stromal cells, has been reported to be effective for the treatment of trigeminal neuropathic pain and chronic migraine and tension-type headaches. It is possible that stem cell activity targets neurogenic inflammation, which is a well-documented aspect of migraine pathogenesis. METHODS Adult patients with severe migraine-related disability as measured by the Migraine Disability Assessment (MIDAS) score who failed botulinum toxin injections and at least 3 prophylactic drugs were included in this study. The primary outcome measure was the change in MIDAS score 3 months after treatment. Standard liposuction was performed to obtain adipose tissue, from which SVF was isolated by centrifugation. A sample of each patient's SVF was tested for the number of nucleated cells and their viability. Between 8 and 10 mL of SVF with 2.5-8.6 million viable cells were injected into the pericranial, neck, and trapezius muscles. RESULTS One man and 8 women were enrolled in the study. The mean age was 48 years, the mean duration of headaches was 16 years, the mean number of prophylactic drugs tried was 10, and the mean MIDAS score at baseline was 122. Three months after the procedure the mean MIDAS score was 88. Seven out of 9 patients had a decrease in their MIDAS score, but only 2 had meaningful improvement. CONCLUSION The use of autologous adipose-derived SVF may be effective in the treatment of chronic refractory migraines. It is possible that the use of allogenic stem cells could offer a more practical and more effective approach.
Collapse
Affiliation(s)
- Alexander Mauskop
- New York Headache Center, Department of Neurology, SUNY Downstate Medical Center, New York, New York, USA
| | - Kenneth O Rothaus
- Division of Plastic and Reconstructive Surgery, Cornell Medical College, New York, New York, USA
| |
Collapse
|
41
|
Rosén A, Tardast A, Shi TJ. How Far Have We Come in the Field of Nerve Regeneration After Trigeminal Nerve Injury? ACTA ACUST UNITED AC 2016; 3:309-313. [PMID: 27891301 PMCID: PMC5104765 DOI: 10.1007/s40496-016-0115-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients suffering from nerve injury with sensory disturbances or orofacial pain have greatly reduced quality of life, and it is a big cost for the society. Abnormal sensations caused by trigeminal nerve injury often become chronic, severely debilitating, and extremely difficult to treat. In general, non-invasive treatment such as drug treatment has been insufficient, and there are currently few available effective treatments. Surgical interventions such as end-to-end connection or nerve grafting have disadvantages such as donor site morbidity or formation of neuroma. There is need for optimizing the technique for nerve repair, especially for the trigeminal nerve system, which has so far not yet been well explored. Recently, tissue engineering using biodegradable synthetic material and cell-based therapies represents a promising approach to nerve repair and it has been reported that mesenchymal stem cell (MSC) has an anti-inflammatory effect and seems to play an important role in nerve healing and regeneration.
Collapse
Affiliation(s)
- Annika Rosén
- Division of Oral and Maxillofacial Surgery, University of Bergen, Årstadveien 19, 5020 Bergen, Norway ; Department of Clinical Dentistry, University of Bergen, Årstadveien 19, 5020 Bergen, Norway
| | - Arezo Tardast
- Department of Oral and Maxillofacial Surgery, Södra Älvsborg Hospital, 501 82 Borås, Sweden
| | - Tie-Jun Shi
- Department of Clinical Dentistry, University of Bergen, Årstadveien 19, 5020 Bergen, Norway ; Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Guo W, Chu YX, Imai S, Yang JL, Zou S, Mohammad Z, Wei F, Dubner R, Ren K. Further observations on the behavioral and neural effects of bone marrow stromal cells in rodent pain models. Mol Pain 2016; 12:12/0/1744806916658043. [PMID: 27329776 PMCID: PMC4956005 DOI: 10.1177/1744806916658043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs) have shown potential to treat chronic pain, although much still needs to be learned about their efficacy and mechanisms of action under different pain conditions. Here, we provide further convergent evidence on the effects of BMSCs in rodent pain models. RESULTS In an orofacial pain model involving injury of a tendon of the masseter muscle, BMSCs attenuated behavioral pain conditions assessed by von Frey filaments and a conditioned place avoidance test in female Sprague-Dawley rats. The antihyperalgesia of BMSCs in females lasted for <8 weeks, which is shorter than that seen in males. To relate preclinical findings to human clinical conditions, we used human BMSCs. Human BMSCs (1.5 M cells, i.v.) attenuated mechanical and thermal hyperalgesia induced by spinal nerve ligation and suppressed spinal nerve ligation-induced aversive behavior, and the effect persisted through the 8-week observation period. In a trigeminal slice preparation, BMSC-treated and nerve-injured C57B/L mice showed reduced amplitude and frequency of spontaneous excitatory postsynaptic currents, as well as excitatory synaptic currents evoked by electrical stimulation of the trigeminal nerve root, suggesting inhibition of trigeminal neuronal hyperexcitability and primary afferent input by BMSCs. Finally, we observed that GluN2A (N-methyl-D-aspartate receptor subunit 2A) tyrosine phosphorylation and protein kinase Cgamma (PKCg) immunoreactivity in rostral ventromedial medulla was suppressed at 8 weeks after BMSC in tendon-injured rats. CONCLUSIONS Collectively, the present work adds convergent evidence supporting the use of BMSCs in pain control. As PKCg activity related to N-methyl-D-aspartate receptor activation is critical in opioid tolerance, these results help to understand the mechanisms of BMSC-produced long-term antihyperalgesia, which requires opioid receptors in rostral ventromedial medulla and apparently lacks the development of tolerance.
Collapse
Affiliation(s)
- Wei Guo
- University of Maryland School of Denstistry
| | - Yu-Xia Chu
- University of Maryland School of DenstistryUniversity of Maryland School of DentistryUniversity of Maryland School of DentristryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| | - Satoshi Imai
- University of Maryland School of DenstistryUniversity of Maryland School of DentistryUniversity of Maryland School of DentristryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| | | | | | | | - Feng Wei
- University of Maryland School of DenstistryUniversity of Maryland School of DentistryUniversity of Maryland School of DentristryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| | | | - Ke Ren
- University of Maryland School of DenstistryUniversity of Maryland School of DentistryUniversity of Maryland School of DentristryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| |
Collapse
|
43
|
Cho YA, Kim DS, Song M, Bae WJ, Lee S, Kim EC. Protein Interacting with Never in Mitosis A-1 Induces Glutamatergic and GABAergic Neuronal Differentiation in Human Dental Pulp Stem Cells. J Endod 2016; 42:1055-61. [PMID: 27178251 DOI: 10.1016/j.joen.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the role of protein interacting with never in mitosis A-1 (PIN1) in the neuronal or glial differentiation of human dental pulp stem cells (hDPSCs) and whether PIN1 can regulate determination of neuronal sub-phenotype. METHODS After magnetic-activated cell sorting to separate CD34(+)/c-kit(+)/STRO-1(+) hDPSCs, cells were cultured in neurogenic medium. Differentiation was measured as Nissl staining and marker protein or mRNA expression by reverse transcriptase polymerase chain reaction, immunofluorescence, and flow cytometric analysis. RESULTS PIN1 mRNA levels were upregulated in a time-dependent fashion during neurogenic differentiation. The PIN1 inhibitor juglone suppressed neuronal differentiation but promoted glial differentiation as assessed by the number of Nissl-positive cells and mRNA expression of neuronal markers (nestin, βIII-tubulin, and NeuN) and a glial marker (glial fibrillary acidic protein). Conversely, overexpression of PIN1 by infection with adenovirus-PIN1 increased neuronal differentiation but decreased glial differentiation. Moreover, PIN1 overexpression increased the percentage of glutamatergic and GABAergic cells but decreased that of dopaminergic cells among total NeuN-positive hDPSCs. CONCLUSIONS This is the first study to demonstrate that PIN1 overexpression induced glutamatergic and GABAergic neuronal differentiation but suppressed glial differentiation of hDPSCs, suggesting that enhancing PIN expression is important to obtain human glutamatergic and GABAergic neurons from hDPSCs.
Collapse
Affiliation(s)
- Young-Ah Cho
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Miyeoun Song
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Won-Jung Bae
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Soojung Lee
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Lee HY, Lee HL, Yun Y, Kim JS, Ha Y, Yoon DH, Lee SH, Shin DA. Human Adipose Stem Cells Improve Mechanical Allodynia and Enhance Functional Recovery in a Rat Model of Neuropathic Pain. Tissue Eng Part A 2015; 21:2044-52. [DOI: 10.1089/ten.tea.2014.0713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Hye Yeong Lee
- Department of Neurosurgery, Spine & Spinal Cord Institute, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hye-Lan Lee
- Department of Neurosurgery, Spine & Spinal Cord Institute, Yonsei University, Seoul, Republic of Korea
| | - Yeomin Yun
- Department of Neurosurgery, Spine & Spinal Cord Institute, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jin-Su Kim
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine & Spinal Cord Institute, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Do Heum Yoon
- Department of Neurosurgery, Spine & Spinal Cord Institute, Yonsei University, Seoul, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Spine & Spinal Cord Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
45
|
McDonough P, McKenna JP, McCreary C, Downer EJ. Neuropathic orofacial pain: cannabinoids as a therapeutic avenue. Int J Biochem Cell Biol 2014; 55:72-8. [PMID: 25150831 DOI: 10.1016/j.biocel.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
Neuropathic orofacial pain (NOP) exists in several forms including pathologies such as burning mouth syndrome (BMS), persistent idiopathic facial pain (PIFP), trigeminal neuralgia (TN) and postherpetic neuralgia (PHN). BMS and PIFP are classically diagnosed by excluding other facial pain syndromes. TN and PHN are most often diagnosed based on a typical history and presenting pain characteristics. The pathophysiology of some of these conditions is still unclear and hence treatment options tend to vary and include a wide variety of treatments including cognitive behaviour therapy, anti-depressants, anti-convulsants and opioids; however such treatments often have limited efficacy with a great amount of inter-patient variability and poorly tolerated side effects. Analgesia is one the principal therapeutic targets of the cannabinoid system and many studies have demonstrated the efficacy of cannabinoid compounds in the treatment of neuropathic pain. This review will investigate the potential use of cannabinoids in the treatment of symptoms associated with NOP.
Collapse
Affiliation(s)
- Patrick McDonough
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Joseph P McKenna
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470983. [PMID: 25197647 PMCID: PMC4147203 DOI: 10.1155/2014/470983] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a highly invalidating disease resulting as consequence of a lesion or disease affecting the somatosensory system. All the pharmacological treatments today in use give a long lasting pain relief only in a limited percentage of patients before pain reappears making NP an incurable disease. New approaches are therefore needed and research is testing stem cell usage. Several papers have been written on experimental neuropathic pain treatment using stem cells of different origin and species to treat experimental NP. The original idea was based on the capacity of stem cell to offer a totipotent cellular source for replacing injured neural cells and for delivering trophic factors to lesion site; soon the researchers agreed that the capacity of stem cells to contrast NP was not dependent upon their regenerative effect but was mostly linked to a bidirectional interaction between the stem cell and damaged microenvironment resident cells. In this paper we review the preclinical studies produced in the last years assessing the effects induced by several stem cells in different models of neuropathic pain. The overall positive results obtained on pain remission by using stem cells that are safe, of easy isolation, and which may allow an autologous transplant in patients may be encouraging for moving from bench to bedside, although there are several issues that still need to be solved.
Collapse
|