1
|
Wu Y, Kong Q, Li Y, Feng Y, Zhang B, Liu Y, Yu S, Liu J, Cao J, Cui F, Kong J. Potential scalp acupuncture and brain stimulation targets for common neurological disorders: evidence from neuroimaging studies. Chin Med 2025; 20:58. [PMID: 40329319 PMCID: PMC12057072 DOI: 10.1186/s13020-025-01106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Scalp acupuncture is a promising potential therapy for neurological disorders. However, the development of its stimulation targets-both in identifying novel targets and refining the precision of their localization-has advanced slowly, largely due to the inadequate integration of brain science findings. This study leverages advances in brain neuroimaging to identify evidence-based cortical targets, enhancing the potential of scalp acupuncture and other brain stimulation techniques. METHODS Using the Neurosynth Compose platform, systematic meta-analyses of neuroimaging studies were conducted to identify potential surface cortical targets for ten neurological conditions: Subjective Cognitive Decline (SCD), Mild Cognitive Impairment (MCI), Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), Post-Stroke Aphasia (PSA), Primary Progressive Aphasia (PPA), Dyslexia, Chronic Pain, and Disorders of Consciousness (DoC). These targets were projected onto the scalp, further localized using scalp acupuncture lines, traditional acupoints and EEG 10-20 system. RESULTS We have identified specific cortical targets for scalp acupuncture associated with ten neurological disorders. Our findings are broadly consistent with current scalp acupuncture protocols while introducing additional new stimulation targets, such as the inferior temporal gyrus for memory processing and the angular gyrus for visuospatial attention. Additionally, the identified targets align with evidence from non-invasive brain stimulation, supporting therapeutic strategies for conditions such as movement disorders and cognitive impairments by targeting areas like the dorsolateral prefrontal cortex and primary motor cortex. CONCLUSION Our findings provide a foundation for developing a brain imaging-based scalp acupuncture protocol for neurological disorders. The identified targets may also be used as brain stimulation targets for these disorders.
Collapse
Affiliation(s)
- Yuefeng Wu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yuanyuan Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yuan Feng
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Binlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China
| | - Yu Liu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Siyi Yu
- Acupuncture-Moxibustion and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Liu
- College of Traditional Chinese Medicine, Capital Medical University, 100000, Beijing, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fangyuan Cui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
2
|
Feng T, Zhang C, Chen W, Zhou J, Chen L, Wang L, Wang Y, Xie Z, Xu S, Xiang J. Resting-state connectivity enhancement in Aphasia patients post-speech therapy: a localization model. Brain Imaging Behav 2025; 19:365-378. [PMID: 39900770 DOI: 10.1007/s11682-025-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Resting-state functional connectivity has become a valuable tool in studying post-stroke aphasia (PSA). However, the specific distribution of increased functional connectivity areas (IFCAs) in PSA patients after speech-language therapy (SLT) remains unclear, particularly compared with the intrinsic brain network (IBN) observed in healthy controls. This study aimed to explore the effects of SLT and spontaneous recovery on functional connectivity changes in the brain. We recruited twenty healthy controls and twelve PSA patients, each of whom underwent one month of SLT. The Chinese version of the Western Aphasia Battery (WAB) was administered to assess language function recovery. The Dice coefficients were calculated between each patient's lesion and the reference lesion, which showed moderate to high intensity. The results revealed a close association between the spatial distribution of IFCAs and improvements in specific language functions. Our findings indicate that the distribution pattern of IFCAs may serve as a significant marker of recovery in PSA patients.
Collapse
Affiliation(s)
- Tao Feng
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiwei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Jie Zhou
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lingmin Wang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yanan Wang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhiyuan Xie
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Siwei Xu
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Kuang Y, Liang X, Ye W, Fu S, Qin Y, Ma Y, Luo Z. Abnormal brain regional activity in acute thyrotoxic myopathy assessed by resting-state functional MRI. Acta Radiol 2024; 65:1347-1358. [PMID: 39314056 DOI: 10.1177/02841851241280115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND The neurophysiological mechanisms underlying manifestations of bulbar paralysis in acute thyrotoxic myopathy (ATM) and the afflicted brain areas are unclear. PURPOSE We used resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the regional brain activities in patients with ATM. MATERIAL AND METHODS In total, 16 patients with ATM, 16 patients with hyperthyroidism without ATM, and 16 healthy controls underwent functional MRI scans. By calculating the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC), we assessed variations in resting-state cerebral activity. The correlation between the resting-state functional indexes and clinical assessments was also explored. RESULTS Compared to the hyperthyroid patients, patients with ATM had stronger ReHo in the left precentral gyrus, reduced ReHo in the left orbitofrontal gyrus (OFG), and decreased FC in the left precentral gyri, left superior frontal gyrus (SFG), and left middle frontal gyrus (MFG). Patients with ATM showed reduced fALFF and ReHo in the right SFG and decreased ReHo in the bilateral supplementary motor area (SMA). A significantly decreased FC in the left SFG and left MFG, right precentral gyrus, and the orbital part of the right interior frontal gyrus was observed in patients with ATM compared to healthy controls. Additionally, fALFF and ReHo values were positively correlated with serum thyroid-related hormones and antibodies. CONCLUSION The findings of rs-fMRI demonstrate that particular brain regions' functional activity was aberrant in individuals with ATM, especially in SFG area. This finding may help with better understanding of underlying pathophysiology of patients with ATM.
Collapse
Affiliation(s)
- Yaqi Kuang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Shien Fu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yan Ma
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
4
|
Liu N, Ye TF, Yu QW. The role of the right hemispheric homologous language pathways in recovery from post-stroke aphasia: A systematic review. Psychiatry Res Neuroimaging 2024; 343:111866. [PMID: 39098261 DOI: 10.1016/j.pscychresns.2024.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The involvement of the right hemisphere, mainly the activation of the right cerebral regions, in recovery from post-stroke aphasia has been widely recognized. In contrast, the role of the right white matter pathways in the recovery from post-stroke aphasia is rarely understood. In this study, we aimed to provide a primary overview of the correlation between the structural integrity of the right hemispheric neural tracts based on the dual-stream model of language organization and recovery from post-stroke aphasia by systematically reviewing prior longitudinal interventional studies. By searching electronic databases for relevant studies according to a standard protocol, a total of 10 records (seven group studies and three case studies) including 79 participants were finally included. After comprehensively analyzing these studies and reviewing the literature, although no definite correlation was found between the right hemispheric neural tracts and recovery from post-stroke aphasia, our review provideds a new perspective for investigating the linguistic role of the right hemispheric neural tracts. This suggests that the involvement of the right hemispheric neural tracts in recovery from post-stroke aphasia may be mediated by multiple factors; thus, this topic should be comprehensively investigated in the future.
Collapse
Affiliation(s)
- Na Liu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Tian-Fen Ye
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Qi-Wei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, Jiangsu, China.
| |
Collapse
|
5
|
Han Y, Jing Y, Shi Y, Mo H, Wan Y, Zhou H, Deng F. The role of language-related functional brain regions and white matter tracts in network plasticity of post-stroke aphasia. J Neurol 2024; 271:3095-3115. [PMID: 38607432 DOI: 10.1007/s00415-024-12358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The neural mechanisms underlying language recovery after a stroke remain controversial. This review aimed to summarize the plasticity and reorganization mechanisms of the language network through neuroimaging studies. Initially, we discussed the involvement of right language homologues, perilesional tissue, and domain-general networks. Subsequently, we summarized the white matter functional mapping and remodeling mechanisms associated with language subskills. Finally, we explored how non-invasive brain stimulation (NIBS) promoted language recovery by inducing neural network plasticity. It was observed that the recruitment of right hemisphere language area homologues played a pivotal role in the early stages of frontal post-stroke aphasia (PSA), particularly in patients with larger lesions. Perilesional plasticity correlated with improved speech performance and prognosis. The domain-general networks could respond to increased "effort" in a task-dependent manner from the top-down when the downstream language network was impaired. Fluency, repetition, comprehension, naming, and reading skills exhibited overlapping and unique dual-pathway functional mapping models. In the acute phase, the structural remodeling of white matter tracts became challenging, with recovery predominantly dependent on cortical activation. Similar to the pattern of cortical activation, during the subacute and chronic phases, improvements in language functions depended, respectively, on the remodeling of right white matter tracts and the restoration of left-lateralized language structural network patterns. Moreover, the midline superior frontal gyrus/dorsal anterior cingulate cortex emerged as a promising target for NIBS. These findings offered theoretical insights for the early personalized treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Health Management (Physical Examination) Center, The Second Norman Bethune Hospital of Jilin University, Changchun, China
| | - Hongbin Mo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafei Wan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Graessner A, Duchow C, Zaccarella E, Friederici AD, Obrig H, Hartwigsen G. Electrophysiological correlates of basic semantic composition in people with aphasia. Neuroimage Clin 2023; 40:103516. [PMID: 37769366 PMCID: PMC10540050 DOI: 10.1016/j.nicl.2023.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
The neuroanatomical correlates of basic semantic composition have been investigated in previous neuroimaging and lesion studies, but research on the electrophysiology of the involved processes is scarce. A large literature on sentence-level event-related potentials (ERPs) during semantic processing has identified at least two relevant components - the N400 and the P600. Other studies demonstrated that these components are reduced and/or delayed in people with aphasia (PWA). However, it remains to be shown if these findings generalize beyond the sentence level. Specifically, it is an open question if an alteration in ERP responses in PWA can also be observed during basic semantic composition, providing a potential future diagnostic tool. The present study aimed to elucidate the electrophysiological dynamics of basic semantic composition in a group of post-stroke PWA. We included 20 PWA and 20 age-matched controls (mean age 58 years) and measured ERP responses while they performed a plausibility judgment task on two-word phrases that were either meaningful ("anxious horse"), anomalous ("anxious wood") or had the noun replaced by a pseudoword ("anxious gufel"). The N400 effect for anomalous versus meaningful phrases was similar in both groups. In contrast, unlike the control group, PWA did not show an N400 effect between pseudoword and meaningful phrases. Moreover, both groups exhibited a parietal P600 effect towards pseudoword phrases, while PWA showed an additional P600 over frontal electrodes. Finally, PWA showed an inverse correlation between the magnitude of the N400 and P600 effects: PWA exhibiting no or even reversed N400 effects towards anomalous and pseudoword phrases showed a stronger P600 effect. These results may reflect a compensatory mechanism which allows PWA to arrive at the correct interpretation of the phrase. When compositional processing capacities are impaired in the early N400 time-window, PWA may make use of a more elaborate re-analysis process reflected in the P600.
Collapse
Affiliation(s)
- Astrid Graessner
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany; Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Caroline Duchow
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany; Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Xie X, Zhang T, Bai T, Chen C, Ji GJ, Tian Y, Yang J, Wang K. Resting-State Neural-Activity Alterations in Subacute Aphasia after Stroke. Brain Sci 2022; 12:678. [PMID: 35625064 PMCID: PMC9139890 DOI: 10.3390/brainsci12050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Linguistic deficits are frequent symptoms among stroke survivors. The neural mechanism of post-stroke aphasia (PSA) was incompletely understood. Recently, resting-state functional magnetic resonance imaging (rs-fMRI) was widely used among several neuropsychological disorders. However, previous rs-fMRI studies of PSA were limited to very small sample size and the absence of reproducibility with different neuroimaging indexes. The present study performed comparisons with static and dynamic amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) based on modest sample size (40 PSA and 37 healthy controls). Compared with controls, PSA showed significantly increased static ALFF predominantly in the bilateral supplementary motor area (SMA) and right hippocampus-parahippocampus (R HIP-ParaHip) and decreased static ALFF in right cerebellum. The increased dynamic ALFF in SMA and decreased dynamic ALFF in right cerebellum were also found in PSA. The static and dynamic ALFF in right cerebellum was positively correlated with spontaneous speech. The FC between the SMA and R HIP-ParaHip was significantly stronger in patients than controls and positively correlated with ALFF in bilateral SMA. In addition, the FC between the R HIP-ParaHip and the right temporal was also enhanced in patients and negatively correlated with repetition, naming, and comprehension score. These findings revealed consistently abnormal intrinsic neural activity in SMA and cerebellum, which may underlie linguistic deficits in PSA.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei 230026, China;
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 231299, China
| |
Collapse
|
8
|
Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep 2022; 12:3239. [PMID: 35217779 PMCID: PMC8881511 DOI: 10.1038/s41598-022-07302-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
In the current decade, a growing body of evidence has proposed the correlation between diet and cognitive function or dementia in the ageing population. This study was designed to appraise discoveries from the randomized controlled trials to confirm the effects of berry-based supplements or foods on cognitive function in older adults. PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science, Scopus, EMBASE, Google Scholar, and ProQuest as well as SID, Magiran, and Iranmedex electronic databases were explored for human interventional studies up to March 2021. In total, eleven articles were identified using frozen blueberry (n = 4 studies), blueberry concentrate (n = 2), beverage (n = 3), capsule (n = 1), extract and powder (n = 1). These studies had been performed among older people with no recognized cognitive impairment or mild cognitive impairment (MCI). The primary outcomes included global cognitive function, psychomotor function, learning and memory, working memory capacity, executive functions, and brain perfusion/activity. To our knowledge, this is the first systematic review of available clinical trials on the effects of berry-based supplements and foods on cognitive performances as well as brain perfusion parameters among the elderly with normal cognition or MCI. Existing evidence concludes that berry-based supplements and foods have beneficial effects on resting brain perfusion, cognitive function, memory performance, executive functioning, processing speed, and attention indices.
Collapse
Affiliation(s)
- Negar Bonyadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yaghoub Salekzamani
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica College, Utica, USA
| |
Collapse
|
9
|
Predicting language recovery in post-stroke aphasia using behavior and functional MRI. Sci Rep 2021; 11:8419. [PMID: 33875733 PMCID: PMC8055660 DOI: 10.1038/s41598-021-88022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Abstract
Language outcomes after speech and language therapy in post-stroke aphasia are challenging to predict. This study examines behavioral language measures and resting state fMRI (rsfMRI) as predictors of treatment outcome. Fifty-seven patients with chronic aphasia were recruited and treated for one of three aphasia impairments: anomia, agrammatism, or dysgraphia. Treatment effect was measured by performance on a treatment-specific language measure, assessed before and after three months of language therapy. Each patient also underwent an additional 27 language assessments and a rsfMRI scan at baseline. Patient scans were decomposed into 20 components by group independent component analysis, and the fractional amplitude of low-frequency fluctuations (fALFF) was calculated for each component time series. Post-treatment performance was modelled with elastic net regression, using pre-treatment performance and either behavioral language measures or fALFF imaging predictors. Analysis showed strong performance for behavioral measures in anomia (R2 = 0.948, n = 28) and for fALFF predictors in agrammatism (R2 = 0.876, n = 11) and dysgraphia (R2 = 0.822, n = 18). Models of language outcomes after treatment trained using rsfMRI features may outperform models trained using behavioral language measures in some patient populations. This suggests that rsfMRI may have prognostic value for aphasia therapy outcomes.
Collapse
|
10
|
Yang YC, Li QY, Chen MJ, Zhang LJ, Zhang MY, Pan YC, Ge QM, Shu HY, Lin Q, Shao Y. Investigation of Changes in Retinal Detachment-Related Brain Region Activities and Functions Using the Percent Amplitude of Fluctuation Method: A Resting-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2021; 17:251-260. [PMID: 33536757 PMCID: PMC7850567 DOI: 10.2147/ndt.s292132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The percent amplitude of fluctuation (PerAF) method was used to study the changes in neural activities and functions in specific brain regions of patients with a retinal detachment (RD). PATIENTS AND METHODS In this study, we recruited 15 RD patients (nine males and six females) and 15 healthy controls (HCs) matched for gender, age, and weight. All participants were scanned with resting functional magnetic resonance imaging (rs-fMRI). The PerAF method was then used for data analysis to evaluate and detect changes in neural activity in relevant brain regions. Receiver operating characteristic (ROC) curve analysis was used to evaluate the two groups. RESULTS The PerAF signal values of the right fusiform gyrus and the left inferior temporal gyrus of RD patients were significantly higher than those of HCs. This may indicate changes in neural activity and function in the related brain regions. The anxiety and depression scores of hospital anxiety and depression scale (HADS) and the durations in RD patients were positively correlated with the PerAF values of the left inferior temporal gyrus. CONCLUSION In this study, we demonstrated that there were significant changes in the PerAF values in specific areas of the brain in patients with RD. The change of PerAF values represent the changes of BOLD signal intensity, which reflect the hyperactivity or weakening of specific brain regions in RD patients, which are helpful to predict the development and prognosis of RD patients, and play an important role in the early diagnosis of RD. In addition, according to the results, changes in neural activity in specific brain regions of RD patients increase the risk of brain dysfunction related diseases, which may help to understand the pathological mechanism of vision loss in RD patients.
Collapse
Affiliation(s)
- Yan-Chang Yang
- Department of Ophthalmology, Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Min-Jie Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Meng-Yao Zhang
- Department of Ophthalmology, Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
11
|
Stefani A, Mitterling T, Heidbreder A, Steiger R, Kremser C, Frauscher B, Gizewski ER, Poewe W, Högl B, Scherfler C. Multimodal Magnetic Resonance Imaging reveals alterations of sensorimotor circuits in restless legs syndrome. Sleep 2019; 42:zsz171. [PMID: 31555830 DOI: 10.1093/sleep/zsz171] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/22/2019] [Indexed: 01/03/2025] Open
Abstract
STUDY OBJECTIVES Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. METHODS Eighty-seven patients with RLS (mean age 51, range 20-72 years; disease duration, mean 13 years, range 1-46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. RESULTS Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = -0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). CONCLUSIONS Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.
Collapse
Affiliation(s)
- Ambra Stefani
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Mitterling
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Anna Heidbreder
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Ruth Steiger
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Kremser
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Frauscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Elke R Gizewski
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Scherfler
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|