1
|
Mark VW. Biomarkers and Rehabilitation for Functional Neurological Disorder. J Pers Med 2024; 14:948. [PMID: 39338202 PMCID: PMC11433361 DOI: 10.3390/jpm14090948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Functional neurological disorder, or FND, is widely misunderstood, particularly when considering recent research indicating that the illness has numerous biological markers in addition to its psychiatric disorder associations. Nonetheless, the long-held view that FND is a mental illness without a biological basis, or even a contrived (malingered) illness, remains pervasive both in current medical care and general society. This is because FND involves intermittent disability that rapidly and involuntarily alternates with improved neurological control. This has in turn caused shaming, perceived low self-efficacy, and social isolation for the patients. Until now, biomarker reviews for FND tended not to examine the features that are shared with canonical neurological disorders. This review, in contrast, examines current research on FND biomarkers, and in particular their overlap with canonical neurological disorders, along with the encouraging outcomes for numerous physical rehabilitation trials for FND. These findings support the perspective endorsed here that FND is unquestionably a neurological disorder that is also associated with many biological markers that lie outside of the central nervous system. These results suggest that FND entails multiple biological abnormalities that are widely distributed in the body. General healthcare providers would benefit their care for their patients through their improved understanding of the illness and recourses for support and treatment that are provided in this review.
Collapse
Affiliation(s)
- Victor W. Mark
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-934-3499
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Lewis EC, Jaeger A, Girn M, Omene E, Brendle M, Argento E. Exploring psychedelic-assisted therapy in the treatment of functional seizures: A review of underlying mechanisms and associated brain networks. J Psychopharmacol 2024; 38:407-416. [PMID: 38654554 PMCID: PMC11102649 DOI: 10.1177/02698811241248395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Functional seizures (FS), the most common subtype of functional neurological disorder (FND), cause serious neurological disability and significantly impact quality of life. Characterized by episodic disturbances of functioning that resemble epileptic seizures, FS coincide with multiple comorbidities and are treated poorly by existing approaches. Novel treatment approaches are sorely needed. Notably, mounting evidence supports the safety and efficacy of psychedelic-assisted therapy (PAT) for several psychiatric conditions, motivating investigations into whether this efficacy also extends to neurological disorders. Here, we synthesize past empirical findings and frameworks to construct a biopsychosocial mechanistic argument for the potential of PAT as a treatment for FS. In doing so, we highlight FS as a well-defined cohort to further understand the large-scale neural mechanisms underpinning PAT. Our synthesis is guided by a complexity science perspective which we contend can afford unique mechanistic insight into both FS and PAT, as well as help bridge these two domains. We also leverage this perspective to propose a novel analytic roadmap to identify markers of FS diagnostic specificity and treatment success. This endeavor continues the effort to bridge clinical neurology with psychedelic medicine and helps pave the way for a new field of psychedelic neurology.
Collapse
Affiliation(s)
- Evan Cole Lewis
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Manesh Girn
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Madeline Brendle
- Numinus Wellness Inc., Vancouver, BC, Canada
- Health Outcomes Division, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Elena Argento
- Numinus Wellness Inc., Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
3
|
Byington CG, Goodman AM, Allendorfer JB, Correia S, LaFrance WC, Szaflarski JP. Decreased uncinate fasciculus integrity in functional seizures following traumatic brain injury. Epilepsia 2024; 65:1060-1071. [PMID: 38294068 DOI: 10.1111/epi.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE The uncinate fasciculus (UF) has been implicated previously in contributing to the pathophysiology of functional (nonepileptic) seizures (FS). FS are frequently preceded by adverse life events (ALEs) and present with comorbid psychiatric symptoms, yet neurobiological correlates of these factors remain unclear. To address this gap, using advanced diffusion magnetic resonance imaging (dMRI), UF tracts in a large cohort of patients with FS and pre-existing traumatic brain injury (TBI + FS) were compared to those in patients with TBI without FS (TBI-only). We hypothesized that dMRI measures in UF structural connectivity would reveal UF differences when controlling for TBI status. Partial correlation tests assessed the potential relationships with psychiatric symptom severity measures. METHODS Participants with TBI-only (N = 46) and TBI + FS (N = 55) completed a series of symptom questionnaires and MRI scanning. Deterministic tractography via diffusion spectrum imaging (DSI) was implemented in DSI studio (https://dsi-studio.labsolver.org) with q-space diffeomorphic reconstruction (QSDR), streamline production, and manual segmentation to assess bilateral UF integrity. Fractional anisotropy (FA), radial diffusivity (RD), streamline counts, and their respective asymmetry indices (AIs) served as estimates of white matter integrity. RESULTS Compared to TBI-only, TBI + FS participants demonstrated decreased left hemisphere FA and RD asymmetry index (AI) for UF tracts (both p < .05, false discovery rate [FDR] corrected). Additionally, TBI + FS reported higher symptom severity in depression, anxiety, and PTSD measures (all p < .01). Correlation tests comparing UF white matter integrity differences to psychiatric symptom severity failed to reach criteria for significance (all p > .05, FDR corrected). SIGNIFICANCE In a large, well-characterized sample, participants with FS had decreased white matter health after controlling for the history of TBI. Planned follow-up analysis found no evidence to suggest that UF connectivity measures are a feature of group differences in mood or anxiety comorbidities for FS. These findings suggest that frontolimbic structural connectivity may play a role in FS symptomology, after accounting for prior ALEs and comorbid psychopathology severity.
Collapse
Affiliation(s)
- Caroline G Byington
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jane B Allendorfer
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Correia
- Departments of Psychiatry and Neurology, Veterans Affairs Providence Healthcare System, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | - W Curt LaFrance
- Departments of Psychiatry and Neurology, Veterans Affairs Providence Healthcare System, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Departments of Neurobiology and Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Hassan J, Taib S, Yrondi A. Structural and functional changes associated with functional/dissociative seizures: A review of the literature. Epilepsy Behav 2024; 152:109654. [PMID: 38281393 DOI: 10.1016/j.yebeh.2024.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The term 'functional/dissociative seizures (FDS)' refers to a paroxysmal, transient clinical manifestation that may include motor, sensory, vegetative, psychological and cognitive signs, similar to the manifestations observed in epileptic seizures. In recent years, there has been an increase of literature in the field of brain imaging research on functional neurological disorders and, more specifically, on FDS. However, most of the studies have been carried out on limited samples. We propose an update of this review work by performing a systematic review of studies performed since 2017 in the field of neuroimaging in patients with FDS. METHODS We conducted a systematic review of the literature using the PRISMA methodology and reproduced most of the methodological elements of the latest systematic literature review. RESULTS Our work over the last five years has identified 14 articles. It is still difficult to isolate a distinct structure or network specifically involved in the mechanism of FDS. However, certain structures are recurrently involved in imaging studies, notably the amygdala, the orbitofrontal cortex, and the anterior cingulate cortex. CONCLUSION The contribution of neuroimaging may allow a more precise explanation of the disorder for patients, avoiding the stigma frequently associated with this diagnosis. as with other 'conversion' phenomena which have traditionally been considered only as 'medically unexplained'. In the longer term and beyond a better understanding of the physiopathology of the disorder, the challenge of this neuroimaging work would be to identify specific imaging biomarkers for a diagnosis of FDS.
Collapse
Affiliation(s)
- Johann Hassan
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, CHU de Toulouse, Hôpital Purpan, ToNIC Toulouse NeuroImaging Centre, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Simon Taib
- Service de Psychiatrie, Psychothérapie et Art thérapie CHU de Toulouse, Hôpital Purpan, ToNIC Toulouse NeuroImaging Centre, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, CHU de Toulouse, Hôpital Purpan, ToNIC Toulouse NeuroImaging Centre, Université de Toulouse, INSERM, UPS, Toulouse, France.
| |
Collapse
|
5
|
Coebergh J, Habib S, Teodoro T, Edwards M, Butler M. From Software to Hardware: A Case Series of Functional Neurological Symptoms and Cerebrovascular Disease. J Neuropsychiatry Clin Neurosci 2024; 36:206-213. [PMID: 38343312 DOI: 10.1176/appi.neuropsych.20220182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Neuroimaging studies have identified alterations in both brain structure and functional connectivity in patients with functional neurological disorder (FND). For many patients, FND emerges from physical precipitating events. Nevertheless, there are a limited number of case series in the literature that describe the clinical presentation and neuroimaging correlates of FND following cerebrovascular disease. METHODS The authors collected data from two clinics in the United Kingdom on 14 cases of acute, improving, or delayed functional neurological symptoms following cerebrovascular events. RESULTS Most patients had functional neurological symptoms that were localized to cerebrovascular lesions, and the lesions mapped onto regions known to be part of functional networks disrupted in FND, including the thalamus, anterior cingulate gyrus, insula, and temporoparietal junction. CONCLUSIONS The findings demonstrate that structural lesions can lead to FND symptoms, possibly explained through changes in relevant mechanistic functional networks.
Collapse
Affiliation(s)
- Jan Coebergh
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Shabana Habib
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Tiago Teodoro
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Mark Edwards
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Matt Butler
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| |
Collapse
|
6
|
Ota M, Sone D, Shigemoto Y, Kimura Y, Matsuda H, Sato N. Glymphatic System Activity and Brain Morphology in Patients With Psychogenic Non-epileptic Seizures. Cureus 2024; 16:e53072. [PMID: 38410305 PMCID: PMC10896675 DOI: 10.7759/cureus.53072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND To clarify the neural correlates underlying psychogenic non-epileptic seizures (PNES), we compared glymphatic system activity between patients with PNES and healthy participants using diffusion tensor imaging (DTI)-analysis along the perivascular space (ALPS) method. METHODS The DTI scans were acquired from 16 patients with PNES and 25 healthy participants. We computed the DTI-ALPS index as an index of glymphatic system function and estimated the disease-related changes in the DTI-ALPS index and brain structures in PNES patients. RESULTS There were no significant differences in the DTI-ALPS index between patients with PNES and healthy participants. On the other hand, patients with PNES had decreased fractional anisotropy values in the bilateral posterior cingula, a higher mean diffusivity value around the left insula, and a lower gray matter volume in the bilateral amygdalae compared with healthy participants. CONCLUSIONS Patients with PNES exhibited an impairment of white matter integrity and a reduction of gray matter volume, but no glymphatic-system changes. These findings will play a significant role in our comprehension of this complex illness.
Collapse
Affiliation(s)
- Miho Ota
- Neuropsychiatry, University of Tsukuba, Tsukuba, JPN
| | - Daichi Sone
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Yoko Shigemoto
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Yukio Kimura
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Hiroshi Matsuda
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| | - Noriko Sato
- Radiology, National Center of Neurology and Psychiatry, Kodaira, JPN
| |
Collapse
|
7
|
Dong L, Liang HB, Du J, Wang Y, Zhou Q, Xin Z, Hu Y, Liu YS, Zhao R, Qiao Y, Zhou C, Liu JR, Du X. Microstructural Differences of the Cerebellum-Thalamus-Basal Ganglia-Limbic Cortex in Patients with Somatic Symptom Disorders: a Diffusion Kurtosis Imaging Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:840-851. [PMID: 35986875 DOI: 10.1007/s12311-022-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Somatic symp tom disorders (SSDs) are a group of psychiatric disorders characterized by persistent disproportionate concern and obsessive behaviors regarding physical conditions. Currently, SSDs lack effective treatments and their pathophysiology is unclear. In this paper, we aimed to examine microstructural abnormalities in the brains of patients with SSD using diffusion kurtosis imaging (DKI) and to investigate the correlation between these abnormalities and clinical indicators. Diffusion kurtosis images were acquired from 30 patients with SSD and 30 healthy controls (HCs). Whole-brain maps of multiple diffusion measures, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK), were calculated. To analyze differences between the two groups, nonparametric permutation testing with 10,000 randomized permutations and threshold-free cluster enhancement was used with family-wise error-corrected p values < 0.05 as the threshold for statistical significance. Then, the correlations between significant changes in these diffusion measures and clinical factors were examined. Compared to HCs, patients with SSD had significantly higher FA, MK, and RK and significantly lower MD and RD in the cerebellum, thalamus, basal ganglia, and limbic cortex. The FA in the left caudate and the pontine crossing tract were negatively correlated with disease duration; the MD and the RD in the genu of the corpus callosum were positively correlated with disease duration. Our findings highlight the role of the cerebellum-thalamus-basal ganglia-limbic cortex pathway, especially the cerebellum, in SSDs and enhance our understanding of the pathogenesis of SSDs.
Collapse
Affiliation(s)
- Liao Dong
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Huai-Bin Liang
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yingying Wang
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qichen Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Ziyue Xin
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yue Hu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Sheng Liu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rong Zhao
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuan Qiao
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chenglin Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Jian-Ren Liu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxia Du
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
8
|
Sone D. White Matter Structural Connectivity and Its Impact on Psychogenic Non-Epileptic Seizures: An Evidence-Based Review. Neuropsychiatr Dis Treat 2023; 19:1573-1579. [PMID: 37457838 PMCID: PMC10349606 DOI: 10.2147/ndt.s402378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Psychiatric non-epileptic seizure (PNES), also known as a form of functional neurological disorders (FND), is a common but still underrecognized disorder presenting seizure-like symptoms and no electrophysiological abnormality. Despite the significant burden of this disorder, the neurobiological mechanisms are not clearly understood, which hinders the development of better diagnosis and treatment. In the recent neuroimaging research on PNES, brain network analysis has become a relevant topic beyond conventional methodologies. The human brain is a highly intricate system of interconnected regions that collaborate to facilitate a wide range of cognitive and behavioral functions. White matter tracts, which are comprised of bundles of axonal fibers, are the primary means by which information is transmitted between different brain regions. As such, comprehending the organization and structure of the brain's white matter network is critical for gaining insight into its functional architecture. This review article aims to provide an overview of the brain mechanisms underlying PNES, with a special focus on analyzing brain networks.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Mueller C, Szaflarski JP. White matter microstructure and serum biomarkers of inflammation in psychogenic non-epileptic seizures. Neuroimage Clin 2023; 39:103462. [PMID: 37413772 PMCID: PMC10509528 DOI: 10.1016/j.nicl.2023.103462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Neuroinflammation may contribute to the pathophysiology of psychogenic non-epileptic seizures (PNES). However, it is unclear whether and to what degree comorbid psychiatric symptoms explain this association. In this study, we investigated the neuroinflammatory signature of PNES and how it compares to that of people with psychiatric conditions (PwPCs). METHODS We prospectively assessed differences in neurite density (NDI), orientation dispersion (ODI), and isotropic diffusion (F-ISO) in 23 participants with PNES and 27 PwPCs, and their relationships to serum levels of tumor necrosis factor (TNF)-α, TNF receptor 1 (TNF-R1), TNF-related apoptosis-inducing ligand (TRAIL), interleukin (IL)-6, intercellular adhesion molecule (ICAM)-1, and monocyte chemoattractant protein (MCP)-1 using voxelwise multiple linear regressions. Pearson correlations between serum biomarkers and clinical symptoms were also obtained. RESULTS There were no white matter (WM) microstructural differences between groups. In PNES, TNF-R1 was negatively associated with NDI in the right uncinate fasciculus (UF) and positively associated with F-ISO in the left UF. IL-6 was positively associated with NDI and negatively with F-ISO in the left UF. ICAM-1 was positively associated with ODI in the left UF. TNF-α was negatively associated with ODI in the left cingulum bundle. The opposite relationships were observed in PwPCs. Higher TNF-R1 was associated with higher depression, anxiety, lower emotional quality of life, and higher levels of disability in PNES. CONCLUSIONS For the first time, we report relationships between peripheral inflammatory biomarkers and WM integrity in PNES, including abnormalities in the UF and cingulum bundle. Our results suggest that serum biomarkers of inflammation may, with additional studies, become a useful aid to PNES diagnosis, especially in settings where video-EEG is not available. The lack of group differences in WM microstructure suggests that previously identified WM abnormalities in PNES versus healthy controls may be related to psychological comorbidities of PNES.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA; Departments of Neurobiology and Neurosurgery, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
10
|
Leroy A, Tarrada A, Garcin B, Hingray C. Crisi psicogene non epilettiche (funzionali/dissociative). Neurologia 2023. [DOI: 10.1016/s1634-7072(22)47362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
11
|
Kerr WT, Tatekawa H, Lee JK, Karimi AH, Sreenivasan SS, O'Neill J, Smith JM, Hickman LB, Savic I, Nasrullah N, Espinoza R, Narr K, Salamon N, Beimer NJ, Hadjiiski LM, Eliashiv DS, Stacey WC, Engel J, Feusner JD, Stern JM. Clinical MRI morphological analysis of functional seizures compared to seizure-naïve and psychiatric controls. Epilepsy Behav 2022; 134:108858. [PMID: 35933959 DOI: 10.1016/j.yebeh.2022.108858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Functional seizures (FS), also known as psychogenic nonepileptic seizures (PNES), are physical manifestations of acute or chronic psychological distress. Functional and structural neuroimaging have identified objective signs of this disorder. We evaluated whether magnetic resonance imaging (MRI) morphometry differed between patients with FS and clinically relevant comparison populations. METHODS Quality-screened clinical-grade MRIs were acquired from 666 patients from 2006 to 2020. Morphometric features were quantified with FreeSurfer v6. Mixed-effects linear regression compared the volume, thickness, and surface area within 201 regions-of-interest for 90 patients with FS, compared to seizure-naïve patients with depression (n = 243), anxiety (n = 68), and obsessive-compulsive disorder (OCD, n = 41), respectively, and to other seizure-naïve controls with similar quality MRIs, accounting for the influence of multiple confounds including depression and anxiety based on chart review. These comparison populations were obtained through review of clinical records plus research studies obtained on similar scanners. RESULTS After Bonferroni-Holm correction, patients with FS compared with seizure-naïve controls exhibited thinner bilateral superior temporal cortex (left 0.053 mm, p = 0.014; right 0.071 mm, p = 0.00006), thicker left lateral occipital cortex (0.052 mm, p = 0.0035), and greater left cerebellar white-matter volume (1085 mm3, p = 0.0065). These findings were not accounted for by lower MRI quality in patients with FS. CONCLUSIONS These results reinforce prior indications of structural neuroimaging correlates of FS and, in particular, distinguish brain morphology in FS from that in depression, anxiety, and OCD. Future work may entail comparisons with other psychiatric disorders including bipolar and schizophrenia, as well as exploration of brain structural heterogeneity within FS.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddhika S Sreenivasan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Nilab Nasrullah
- Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine Narr
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dawn S Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
12
|
Ertan D, Aybek S, LaFrance WC, Kanemoto K, Tarrada A, Maillard L, El-Hage W, Hingray C. Functional (psychogenic non-epileptic/dissociative) seizures: why and how? J Neurol Neurosurg Psychiatry 2022; 93:144-157. [PMID: 34824146 DOI: 10.1136/jnnp-2021-326708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/18/2021] [Indexed: 11/04/2022]
Abstract
Functional seizures (FS) known also as psychogenic non-epileptic seizures or dissociative seizures, present with ictal semiological manifestations, along with various comorbid neurological and psychological disorders. Terminology inconsistencies and discrepancies in nomenclatures of FS may reflect limitations in understanding the neuropsychiatric intricacies of this disorder. Psychological and neurobiological processes of FS are incompletely understood. Nevertheless, important advances have been made on underlying neuropsychopathophysiological mechanisms of FS. These advances provide valuable information about the underlying mechanisms of mind-body interactions. From this perspective, this narrative review summarises recent studies about aetiopathogenesis of FS at two levels: possible risk factors (why) and different aetiopathogenic models of FS (how). We divided possible risk factors for FS into three categories, namely neurobiological, psychological and cognitive risk factors. We also presented different models of FS based on psychological and neuroanatomical understanding, multilevel models and integrative understanding of FS. This work should help professionals to better understand current views on the multifactorial mechanisms involved in the development of FS. Shedding light on the different FS profiles in terms of aetiopathogenesis will help guide how best to direct therapy, based on these different underlying mechanisms.
Collapse
Affiliation(s)
- Deniz Ertan
- CRAN,UMR7039, Centre de Recherche en Automatique de Nancy, Vandoeuvre les Nancy, Grand Est, France.,Unité de recherche clinique, Établissement Médical de La Teppe, Tain-l'Hermitage, France
| | - Selma Aybek
- Department of Clinical Neuroscience, Hopitaux Universitaires de Geneve, Geneva, Switzerland.,Department of Clinical Neuroscience, Inselspital Universitatsspital Bern Universitatsklinik fur Neurologie, Bern, Switzerland
| | - W Curt LaFrance
- Psychiatry and Neurology, Brown Medical School Rhode Island Hospital, Providence, Rhode Island, USA
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Aichi, Japan
| | - Alexis Tarrada
- Neurology Department, CHRU de Nancy, Nancy, Lorraine, France.,University Psychiatry Department, Centre Psychothérapique de Nancy, Laxou, Lorraine, France
| | - Louis Maillard
- CRAN,UMR7039, Centre de Recherche en Automatique de Nancy, Vandoeuvre les Nancy, Grand Est, France.,Neurology Department, CHRU de Nancy, Nancy, Lorraine, France
| | - Wissam El-Hage
- Department of Psychiatry, CHRU Tours, Tours, Centre, France
| | - Coraline Hingray
- Neurology Department, CHRU de Nancy, Nancy, Lorraine, France .,University Psychiatry Department, Centre Psychothérapique de Nancy, Laxou, Lorraine, France
| |
Collapse
|
13
|
Perez DL, Nicholson TR, Asadi-Pooya AA, Bègue I, Butler M, Carson AJ, David AS, Deeley Q, Diez I, Edwards MJ, Espay AJ, Gelauff JM, Hallett M, Horovitz SG, Jungilligens J, Kanaan RAA, Tijssen MAJ, Kozlowska K, LaFaver K, LaFrance WC, Lidstone SC, Marapin RS, Maurer CW, Modirrousta M, Reinders AATS, Sojka P, Staab JP, Stone J, Szaflarski JP, Aybek S. Neuroimaging in Functional Neurological Disorder: State of the Field and Research Agenda. Neuroimage Clin 2021; 30:102623. [PMID: 34215138 PMCID: PMC8111317 DOI: 10.1016/j.nicl.2021.102623] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Functional neurological disorder (FND) was of great interest to early clinical neuroscience leaders. During the 20th century, neurology and psychiatry grew apart - leaving FND a borderland condition. Fortunately, a renaissance has occurred in the last two decades, fostered by increased recognition that FND is prevalent and diagnosed using "rule-in" examination signs. The parallel use of scientific tools to bridge brain structure - function relationships has helped refine an integrated biopsychosocial framework through which to conceptualize FND. In particular, a growing number of quality neuroimaging studies using a variety of methodologies have shed light on the emerging pathophysiology of FND. This renewed scientific interest has occurred in parallel with enhanced interdisciplinary collaborations, as illustrated by new care models combining psychological and physical therapies and the creation of a new multidisciplinary FND society supporting knowledge dissemination in the field. Within this context, this article summarizes the output of the first International FND Neuroimaging Workgroup meeting, held virtually, on June 17th, 2020 to appraise the state of neuroimaging research in the field and to catalyze large-scale collaborations. We first briefly summarize neural circuit models of FND, and then detail the research approaches used to date in FND within core content areas: cohort characterization; control group considerations; task-based functional neuroimaging; resting-state networks; structural neuroimaging; biomarkers of symptom severity and risk of illness; and predictors of treatment response and prognosis. Lastly, we outline a neuroimaging-focused research agenda to elucidate the pathophysiology of FND and aid the development of novel biologically and psychologically-informed treatments.
Collapse
Affiliation(s)
- David L Perez
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Timothy R Nicholson
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz Iran; Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Indrit Bègue
- Division of Adult Psychiatry, Department of Psychiatry, University of Geneva, Geneva Switzerland; Service of Neurology Department of Clinical Neuroscience, University of Geneva, Geneva, Switzerland
| | - Matthew Butler
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alan J Carson
- Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| | - Quinton Deeley
- South London and Maudsley NHS Foundation Trust, London UK Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Ibai Diez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Edwards
- Neurosciences Research Centre, St George's University of London, London, UK
| | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Jeannette M Gelauff
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Germany
| | - Richard A A Kanaan
- Department of Psychiatry, University of Melbourne, Austin Health Heidelberg, Australia
| | - Marina A J Tijssen
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, University of Groningen, The Netherlands
| | - Kasia Kozlowska
- The Children's Hospital at Westmead, Westmead Institute of Medical Research, University of Sydney Medical School, Sydney, NSW, Australia
| | - Kathrin LaFaver
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Curt LaFrance
- Departments of Psychiatry and Neurology, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Sarah C Lidstone
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Ramesh S Marapin
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, University of Groningen, The Netherlands
| | - Carine W Maurer
- Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Mandana Modirrousta
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Antje A T S Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Petr Sojka
- Department of Psychiatry, University Hospital Brno, Czech Republic
| | - Jeffrey P Staab
- Departments of Psychiatry and Psychology and Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Rochester, MN, USA
| | - Jon Stone
- Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, UK
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham Epilepsy Center, Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Selma Aybek
- Neurology Department, Psychosomatic Medicine Unit, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Rossetti MG, Delvecchio G, Calati R, Perlini C, Bellani M, Brambilla P. Structural neuroimaging of somatoform disorders: A systematic review. Neurosci Biobehav Rev 2020; 122:66-78. [PMID: 33359097 DOI: 10.1016/j.neubiorev.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Although there has been an increment in neuroimaging research in somatoform disorders (SD), to date little is known about the neural correlates of these diseases. Therefore, in this systematic, review we aimed at summarizing the existing evidence of structural brain alterations in SD as per DSM-IV and DSM-5 criteria. Three electronic databases (Scopus, PubMed and Web of Science) were searched. Only case-control studies using structural neuroimaging were included. Forty-five out of 369 articles fulfilled inclusion criteria and were reviewed. Compared to controls, subjects with SD showed morphological alterations encompassing motor, limbic and somatosensory circuits. Although far from being conclusive, the results suggested that SD are characterized by selective alterations of large-scale brain networks implicated in cognitive control, emotion regulation and processing, stress and somatic-visceral perception. This review highlights the need for further multimodal neuroimaging studies with longitudinal designs, in larger and better-characterized samples, to elucidate the temporal and causal relationship between neuroanatomical changes and SD, which is paramount for informing tailored treatments.
Collapse
Affiliation(s)
- Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Raffaella Calati
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Department of Adult Psychiatry, Nîmes University Hospital, Nîmes, France
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; USD Clinical Psychology, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy.
| |
Collapse
|
15
|
Jungilligens J, Wellmer J, Kowoll A, Schlegel U, Axmacher N, Popkirov S. Microstructural integrity of affective neurocircuitry in patients with dissociative seizures is associated with emotional task performance, illness severity and trauma history. Seizure 2020; 84:91-98. [PMID: 33307466 DOI: 10.1016/j.seizure.2020.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To identify variations in white matter tract integrity related to behavioural control in response to emotional stimuli in patients with dissociative seizures (DS) and healthy controls (HC), and examine associations with illness characteristics and psychological trauma history. METHODS Twenty DS patients and 20 HC completed an emotional go/no-go task and questionnaires, and then underwent diffusion tensor imaging (DTI). RESULTS Patients had higher false alarm rates in response to negative emotional stimuli than HC. Task performance was correlated with self-reported difficulties in emotional awareness and regulation in everyday life. White matter analysis using tract-based spatial statistics revealed no between-group differences. In patients, fractional anisotropy (FA) in the right uncinate fasciculus, right and left fornix/stria terminalis, and corpus callosum were correlated with task performance. Similar results were found for radial diffusivity (RD), but not mean (MD) or axial diffusivity (AD). In HC, task performance was associated with AD and RD of fewer and smaller clusters in the corpus callosum and right fornix/stria terminalis, and none for FA or MD. Probabilistic tractography of thus identified tracts revealed that mean FA values were correlated with illness parameters (right fornix/stria terminalis with age at onset; posterior corpus callosum with seizure frequency), and psychological trauma history (traumatic experiences during adolescence with anterior corpus callosum). CONCLUSIONS Patients with DS show impaired behavioural control in response to emotional stimuli. Microstructural variations in task-related neurocircuitry show associations with illness parameters and psychological trauma history. Future studies using psychiatric controls should examine the specificity of these findings.
Collapse
Affiliation(s)
- Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany; Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Jörg Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Annika Kowoll
- Institute for Diagnostic and Interventional Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Uwe Schlegel
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Stoyan Popkirov
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Sone D, Sato N, Shigemoto Y, Kimura Y, Maikusa N, Ota M, Foong J, Koepp M, Matsuda H. Disrupted White Matter Integrity and Structural Brain Networks in Temporal Lobe Epilepsy With and Without Interictal Psychosis. Front Neurol 2020; 11:556569. [PMID: 33071943 PMCID: PMC7542674 DOI: 10.3389/fneur.2020.556569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Despite the importance of psychosis as a comorbidity of temporal lobe epilepsy (TLE), the underlying neural mechanisms are still unclear. We aimed to investigate abnormalities specific to psychosis in TLE, using diffusion MRI parameters and graph-theoretical network analysis. Material and Methods: We recruited 49 patients with TLE (20 with and 29 without interictal schizophrenia-like psychosis) and 42 age-/gender-matched healthy controls. We performed 3-tesla MRI scans including 3D T1-weighted imaging and diffusion tensor imaging in all participants. Among the three groups, fractional anisotropy (FA), mean diffusivity (MD), and global network metrics were compared by analyses of covariance. Regional connectivity strength was compared by network-based statistics. Results: Compared to controls, TLE patients showed significant temporal and extra-temporal changes in FA, and MD, which were more severe and widespread in patients with than without psychosis. We observed distinct differences between TLE patients with and without psychosis in the anterior thalamic radiation (ATR), inferior fronto-occipital fasciculus (IFOF), and inferior longitudinal fasciculus (ILF). Similarly, for network metrics, global, and local efficiency and increased path length were significantly reduced in TLE patients compared to controls, but with more severe changes in TLE with psychosis than without psychosis. Network-based statistics detected significant differences between TLE with and without psychosis mainly involving the left limbic and prefrontal areas. Conclusion: TLE patients with interictal schizophrenia-like psychosis showed more widespread and severe white matter impairment, involving the ATR, IFOF and ILF, as well as disrupted network connectivity, particularly in the left limbic and prefrontal cortex, than patients without psychosis.
Collapse
Affiliation(s)
- Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Division of Clinical Medicine, Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jacqueline Foong
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
17
|
Goodman AM, Allendorfer JB, Blum AS, Bolding MS, Correia S, Ver Hoef LW, Gaston TE, Grayson LE, Kraguljac NV, Lahti AC, Martin AN, Monroe WS, Philip NS, Tocco K, Vogel V, LaFrance WC, Szaflarski JP. White matter and neurite morphology differ in psychogenic nonepileptic seizures. Ann Clin Transl Neurol 2020; 7:1973-1984. [PMID: 32991786 PMCID: PMC7545605 DOI: 10.1002/acn3.51198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To further evaluate the relationship between the clinical profiles and limbic and motor brain regions and their connecting pathways in psychogenic nonepileptic seizures (PNES). Neurite Orientation Dispersion and Density Indices (NODDI) multicompartment modeling was used to test the relationships between tissue alterations in patients with traumatic brain injury (TBI) and multiple psychiatric symptoms. METHODS The sample included participants with prior TBI (TBI; N = 37) but no PNES, and with TBI and PNES (TBI + PNES; N = 34). Participants completed 3T Siemens Prisma MRI high angular resolution imaging diffusion protocol. Statistical maps, including fractional anisotropy (FA), mean diffusivity (MD), neurite dispersion [orientation dispersion index (ODI)] and density [intracellular volume fraction (ICVF), and free water (i.e., isotropic) volume fraction (V-ISO)] signal intensity, were generated for each participant. Linear mixed-effects models identified clusters of between-group differences in indices of white matter changes. Pearson's r correlation tests assessed any relationship between signal intensity and psychiatric symptoms. RESULTS Compared to TBI, TBI + PNES revealed decreases in FA, ICVF, and V-ISO and increases in MD for clusters within cingulum bundle, uncinate fasciculus, fornix/stria terminalis, and corticospinal tract pathways (cluster threshold α = 0.05). Indices of white matter changes for these clusters correlated with depressive, anxiety, PTSD, psychoticism, and somatization symptom severity (FDR threshold α = 0.05). A follow-up within-group analysis revealed that these correlations failed to reach the criteria for significance in the TBI + PNES group alone. INTERPRETATION The results expand support for the hypothesis that alterations in pathways comprising the specific PNES network correspond to patient profiles. These findings implicate myelin-specific changes as possible contributors to PNES, thus introducing novel potential treatment targets.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jane B. Allendorfer
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Andrew S. Blum
- Department of NeurologyRhode Island HospitalProvidenceRhode IslandUSA
- Brown UniversityProvidenceRhode IslandUSA
| | - Mark S. Bolding
- Department of RadiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Stephen Correia
- Brown UniversityProvidenceRhode IslandUSA
- Department of Psychiatry and Human BehaviorAlpert Medical SchoolBrown UniversityRhode Island HospitalProvidenceRhode IslandUSA
- Center for Neurorestoration and NeurotechnologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Lawrence W. Ver Hoef
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Birmingham VA Medical CenterBirminghamAlabamaUSA
| | - Tyler E. Gaston
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Birmingham VA Medical CenterBirminghamAlabamaUSA
| | - Leslie E. Grayson
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Birmingham VA Medical CenterBirminghamAlabamaUSA
- Children’s of AlabamaUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Nina V. Kraguljac
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adrienne C. Lahti
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Departments of Neurobiology and NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Amber N. Martin
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - William S. Monroe
- Department of Research ComputingUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Noah S. Philip
- Brown UniversityProvidenceRhode IslandUSA
- Center for Neurorestoration and NeurotechnologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Krista Tocco
- Department of NeurologyRhode Island HospitalProvidenceRhode IslandUSA
- Brown UniversityProvidenceRhode IslandUSA
- Center for Neurorestoration and NeurotechnologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Valerie Vogel
- Department of NeurologyRhode Island HospitalProvidenceRhode IslandUSA
- Brown UniversityProvidenceRhode IslandUSA
- Center for Neurorestoration and NeurotechnologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - W. Curt LaFrance
- Center for Neurorestoration and NeurotechnologyProvidence VA Medical CenterProvidenceRhode IslandUSA
- Departments of Psychiatry and NeurologyRhode Island Hospital and Brown UniversityProvidenceRhode IslandUSA
| | - Jerzy P. Szaflarski
- Department of Neurology and the UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Children’s of AlabamaUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Departments of Neurobiology and NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Comprehensive Neuroscience CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
18
|
Brain connectivity abnormalities in patients with functional (psychogenic nonepileptic) seizures: A systematic review. Seizure 2020; 81:269-275. [PMID: 32919251 DOI: 10.1016/j.seizure.2020.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of the current endeavor was to systematically review the existing evidence on brain connectivity abnormalities in patients with functional seizures (FS). METHODS This systematic review was prepared according to the instructions of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. MEDLINE (accessed from PubMed) and Scopus from inception to April 4, 2020 were systematically searched. The following search strategy was implemented and these key words (in the title/abstract) were used: "connectivity" OR "network" AND "psychogenic" OR "dissociative" OR "nonepileptic". RESULTS Through the search strategy, we could identify eighteen articles. These studies have applied various methodologies and they could identify a variety of brain connectivity abnormalities in people with FS. However, none of these studies provided a high level of evidence. They were all small studies (none had a sample size of more than 21 patients). In addition, most of the studies did not match their cases and their controls with respect to the psychiatric comorbidities and other significant confounders. CONCLUSION Abnormal functional connectivity between emotion processing areas of the brain with regions involved in executive control and cognitive performance, and the functional connections of the anterior cingulate cortex are of major interest and may be involved in the pathophysiology of FS. Pursuing the concept of brain connectivity abnormalities in patients with FS and comparing the findings with well-matched controls in well-designed studies may result in a breakthrough in identifying the exact neurobiological origin of FS.
Collapse
|
19
|
Fujii H, Sato W, Kimura Y, Matsuda H, Ota M, Maikusa N, Suzuki F, Amano K, Shin I, Yamamura T, Mori H, Sato N. Altered Structural Brain Networks Related to Adrenergic/Muscarinic Receptor Autoantibodies in Chronic Fatigue Syndrome. J Neuroimaging 2020; 30:822-827. [PMID: 32609410 DOI: 10.1111/jon.12751] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies suggest that the autoantibodies against adrenergic/muscarinic receptors might be one of the causes and potential markers of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The purpose of this study was to investigate the structural network changes related to autoantibody titers against adrenergic/muscarinic receptors in ME/CFS by performing a single-subject gray matter similarity-based structural network analysis. METHODS We prospectively examined 89 consecutive right-handed ME/CFS patients who underwent both brain MRI including 3D T1-wighted images and a blood analysis of autoantibodies titers against β1 adrenergic receptor (β1 AdR-Ab), β2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. Single-subject gray matter similarity-based structural networks were extracted from segmented gray matter images for each patient. We calculated local network properties (betweenness centrality, clustering coefficient, and characteristic path length) and global network properties (normalized path length λ, normalized clustering coefficient γ, and small-world network value δ). We investigated the correlations between the autoantibody titers and regional gray matter/white matter volumes, the local network properties, and the global network properties. RESULTS Betweenness centrality showed a significant positive correlation with β1-AdR-Ab in the right dorsolateral prefrontal cortex. The characteristic path length showed a significant negative correlation with β2-AdR-Ab in the right precentral gyrus. There were no significant correlations between the antibody titers and the regional gray matter/white matter volumes, and the global network properties. CONCLUSIONS Our findings suggest that β1 AdR-Ab and β2 AdR-Ab are potential markers of ME/CFS.
Collapse
Affiliation(s)
- Hiroyuki Fujii
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Radiology, Jichi Medical University, School of Medicine, Shimotsuke, Tochigi, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Isu Shin
- Sekimachi Medical Clinic, Nerima, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Harushi Mori
- Department of Radiology, Jichi Medical University, School of Medicine, Shimotsuke, Tochigi, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|