1
|
Naldi L, Peri A, Fibbi B. Apelin/APJ: Another Player in the Cancer Biology Network. Int J Mol Sci 2025; 26:2986. [PMID: 40243599 PMCID: PMC11988549 DOI: 10.3390/ijms26072986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The apelinergic system exerts multiple biological activities in human pathologies, including cancer. Overactivation of apelin/APJ, which has been detected in many malignant tumors, and the strong correlation with progression-free and overall survival, suggested the role of an oncogene for the apelin gene. Emerging evidence sheds new light on the effects of apelin on cellular functions and homeostasis in cancer cells and supports a direct role for this pathway on different hallmarks of cancer: "sustaining proliferative signaling", "resisting cell death", "activating invasion and metastasis", "inducing/accessing vasculature", "reprogramming cellular metabolism", "avoiding immune destruction" and "tumor-promoting inflammation", and "enabling replicative immortality". This article reviews the currently available literature on the intracellular processes regulated by apelin/APJ, focusing on those pathways correlated with tumor development and progression. Furthermore, the association between the activity of the apelinergic axis and the resistance of cancer cells to oncologic treatments (chemotherapy, immunotherapy, radiation) suggests apelin/APJ as a possible target to potentiate traditional therapies, as well as to develop diagnostic and prognostic applications. This issue will be also covered in the review.
Collapse
Affiliation(s)
- Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
2
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Jafarzadeh A, Naseri B, Khorramdelazad H, Jafarzadeh S, Ghorbaninezhad F, Asgari Z, Masoumi J, Nemati M. Reciprocal Interactions Between Apelin and Noncoding RNAs in Cancer Progression. Cell Biochem Funct 2024; 42:e4116. [PMID: 39233464 DOI: 10.1002/cbf.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Apelin, a bioactive peptide that serves as an endogenous ligand for the apelin receptor (APJ), is overexpressed in various types of cancers and contributes to cancer cell proliferation, viability, migration, angiogenesis, and metastasis, as well as immune deviation. Noncoding RNAs (ncRNAs) regulate gene expression, and there is growing evidence suggesting a bidirectional crosstalk between ncRNAs (including long noncoding RNAs [lncRNAs], circular RNAs [circRNAs], and microRNAs [miRNAs]) and apelin in cancers. Certain miRNAs can directly target the apelin and inhibit its expression, thereby suppressing tumor growth. It has been indicated that miR-224, miR-195/miR-195-5p, miR-204-5p, miR-631, miR-4286, miR-637, miR-4493, and miR-214-3p target apelin mRNA and influence its expression in prostate cancer, lung cancer, esophageal cancer, chondrosarcoma, melanoma, gastric cancer, glioma, and hepatocellular carcinoma (HCC), respectively. Moreover, circ-NOTCH1, circ-ZNF264, and lncRNA BACE1-AS upregulate apelin expression in gastric cancer, glioma, and HCC, respectively. On the other hand, apelin has been shown to regulate the expression of certain ncRNAs to affect tumorigenesis. It was revealed that apelin affects the expression of circ_0000004/miR-1303, miR-15a-5p, and miR-106a-5p in osteosarcoma, lung cancer, and prostate cancer, respectively. This review explains a bidirectional interplay between ncRNAs and apelin in cancers to provide insights concerning the molecular mechanisms underlying this crosstalk and potential implications for cancer therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Kamińska K, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. Neuroprotective effect of apelin-13 and other apelin forms-a review. Pharmacol Rep 2024; 76:439-451. [PMID: 38568371 DOI: 10.1007/s43440-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Hubert Borzuta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
5
|
Liu S, Duan C, Xie J, Zhang J, Luo X, Wang Q, Liang X, Zhao X, Zhuang R, Zhao W, Yin W. Peripheral immune cell death in sepsis based on bulk RNA and single-cell RNA sequencing. Heliyon 2023; 9:e17764. [PMID: 37455967 PMCID: PMC10339024 DOI: 10.1016/j.heliyon.2023.e17764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Background Immune cell activation in early sepsis is beneficial to clear pathogens, but immune cell exhaustion during the inflammatory response induces immunosuppression in sepsis. Here, we studied the relationship between immune cell survival status and the prognosis of sepsis patients. Methods Sepsis patients admitted to our hospital with a diagnosis time of less than 24 h were recruited. RNA sequencing technologies were used to study functional alterations in various immune cells in peripheral blood mononuclear cells (PBMCs) from sepsis patients. Flow cytometry and electron microscopy were performed to study cell apoptosis and morphological alterations. Results A total of 68 sepsis patients with complete data were enrolled and divided into survival (45 patients) and death (23 patients) groups according to their prognosis. Patients in the death group had significantly increased lactic acid levels compared with those in the survival group, but there was no significant difference in other physiological and coagulation functional indicators between the two groups. Bulk RNA sequencing showed that cell death-related pathways and biomarkers were highly enriched and activated in the PBMCs of the death group than that in the survival group. Signs of mitochondrial damage, autophagosomes, cell surface damage and cell surface pore forming were also more pronounced in PBMCs from the death group under electron microscopy. Further single-cell RNA sequencing revealed that cell death occurred mainly in myeloid cells rather than lymphocytes at the early stage of sepsis; cell death patterns of destructive necrosis and pyroptosis were predominant in neutrophils, and apoptosis, autophagy and ferroptosis with less damage to the surroundings were predominant in monocytes. Conclusion Cell death mainly occurs in monocytes and neutrophils in the PBMCs of sepsis at the early stage. The study provides a perspective for the immunotherapy of early sepsis targeting immune cell death.
Collapse
Affiliation(s)
- Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu Luo
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaojun Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Zhang X, Gu Y, Ma Y, Wu J, Chen Y, Tao K, Sun H, Liu Z, Wang X, Tian X. The Apelin/APJ system modulates seizure activity and endocytosis of the NMDA receptor GluN2B subunit. Neurochem Int 2023; 167:105545. [PMID: 37169180 DOI: 10.1016/j.neuint.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
In the central nervous system (CNS), the apelin/APJ system is broadly expressed. According to some studies, activation of this system protects against excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors and exerts neuroprotective effects. However, the role of this system in epilepsy remains unclear. In the present study, immunofluorescence staining and western blotting were used to assess APJ localization and expression in the brains of mice with recurrent spontaneous seizures induced by kainic acid (KA). Behavior and local field potentials (LFPs) were assessed in mice with KA-induced seizures. Susceptibility to seizures was assessed in a pentylenetetrazole (PTZ)-induced seizure model. Whole-cell patch-clamp recordings were used to evaluate the role of the apelin/APJ system in regulating synaptic transmission in brain slices from mice in which Mg2+-free medium was used to induce seizures. NMDA receptor GluN2B subunit expression and phosphorylation of GluN2B at Ser1480 were measured in the mouse hippocampus. APJ was primarily localized in neurons, and its expression was upregulated in the epileptic brain. APJ activation after KA-induced status epilepticus (SE) reduced epileptic activity, whereas APJ inhibition aggravated epileptic activity. In the PTZ model, APJ activation was reduced, and APJ inhibition increased susceptibility to seizures. The apelin/APJ system affected NMDA receptor-mediated postsynaptic currents in patch-clamp recordings. Moreover, APJ regulated the levels of GluN2B phosphorylated at Ser1480 and the abundance of cell-surface GluN2B in neurons. Furthermore, endocytosis of the NMDA receptor GluN2B subunit was regulated by the apelin/APJ system. Together, our findings indicate that the apelin/APJ system modulates seizure activity and may be a novel therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Yixue Gu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Junhong Wu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Kaiyan Tao
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Houchao Sun
- Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Zhao Liu
- Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China.
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
7
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Respekta N, Pich K, Dawid M, Mlyczyńska E, Kurowska P, Rak A. The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells 2022; 12:cells12010150. [PMID: 36611944 PMCID: PMC9818302 DOI: 10.3390/cells12010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system comprises two peptide ligands, apelin and ELABELA, and their cognate G-protein-coupled receptor, the apelin receptor APJ. Apelin is a peptide that was isolated from bovine stomach extracts; the distribution of the four main active forms, apelin-36, -17, -13, and pyr-apelin-13 differs between tissues. The mature form of ELABELA-32 can be transformed into forms called ELABELA-11 or -21. The biological function of the apelinergic system is multifaceted, and includes the regulation of angiogenesis, body fluid homeostasis, energy metabolism, and functioning of the cardiovascular, nervous, respiratory, digestive, and reproductive systems. This review summarises the mechanism of the apelinergic system in cell apoptosis. Depending on the cell/tissue, the apelinergic system modulates cell apoptosis by activating various signalling pathways, including phosphoinositide 3-kinase (PI3K), extracellular signal-regulated protein kinase (ERK1/2), protein kinase B (AKT), 5'AMP-activated protein kinase(AMPK), and protein kinase A (PKA). Apoptosis is critically important during various developmental processes, and any dysfunction leads to pathological conditions such as cancer, autoimmune diseases, and developmental defects. The purpose of this review is to present data that suggest a significant role of the apelinergic system as a potential agent in various therapies.
Collapse
|
9
|
Ivanov MN, Stoyanov DS, Pavlov SP, Tonchev AB. Distribution, Function, and Expression of the Apelinergic System in the Healthy and Diseased Mammalian Brain. Genes (Basel) 2022; 13:2172. [PMID: 36421846 PMCID: PMC9690544 DOI: 10.3390/genes13112172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/27/2023] Open
Abstract
Apelin, a peptide initially isolated from bovine stomach extract, is an endogenous ligand for the Apelin Receptor (APLNR). Subsequently, a second peptide, ELABELA, that can bind to the receptor has been identified. The Apelin receptor and its endogenous ligands are widely distributed in mammalian organs. A growing body of evidence suggests that this system participates in various signaling cascades that can regulate cell proliferation, blood pressure, fluid homeostasis, feeding behavior, and pituitary hormone release. Additional research has been done to elucidate the system's potential role in neurogenesis, the pathophysiology of Glioblastoma multiforme, and the protective effects of apelin peptides on some neurological and psychiatric disorders-ischemic stroke, epilepsy, Parkinson's, and Alzheimer's disease. This review discusses the current knowledge on the apelinergic system's involvement in brain physiology in health and disease.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Anton. B. Tonchev
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| |
Collapse
|
10
|
Lin T, Zhao Y, Guo S, Wu Z, Li W, Wu R, Wang Z, Liu W. Apelin-13 Protects Neurons by Attenuating Early-Stage Postspinal Cord Injury Apoptosis In Vitro. Brain Sci 2022; 12:brainsci12111515. [PMID: 36358441 PMCID: PMC9688050 DOI: 10.3390/brainsci12111515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Apelin is a 77-amino-acid peptide that is an endogenous ligand for the G protein-coupled receptor APJ (Apelin receptor, APJ). Apelin-13, as the most bioactive affinity fragment of apelin, plays a role in energy metabolism, myocardial ischemia-reperfusion injury, and the regulation of the inflammatory response during oxidative stress, but its role in spinal cord injury is still unclear. This research identified and verified the differential expression of apelin in rat spinal cord injured tissues and normal spinal cord tissues by transcriptome sequencing in vivo and proved that apelin-13 protects neurons by strengthening autophagy and attenuating early-stage postspinal cord injury apoptosis in vitro. After constructing the model concerning a rat spinal cord hemisection damage, transcriptome sequencing was performed on the injured and normal spinal cord tissues of rats, which identified the differentially expressed gene apelin, with qRT-PCR detecting the representative level of apelin. The oxygen-glucose deprivation (OGD) model of PC12 cells was constructed in vitro to simulate spinal cord injury. The OGD injury times were 2 h, 4 h, 6 h, 8 h, and 12 h, and the non-OGD injury group was used as the control. The expression of apelin at each time point was observed by Western blotting. The expression of apelin was the lowest in the 6 h OGD injury group (p < 0.05). Therefore, the OGD injury time of 6 h was used in subsequent experiments. The noncytotoxic drug concentration of apelin-13 was determined with a Cell Counting Kit-8 (CCK-8) assay. An appropriate dose of apelin-13 (1 μM) significantly improved cell survival (p < 0.05). Thus, subsequent experiments selected a concentration of 1 μM apelin-13 as it significantly increased cell viability. Finally, we divided the experimental groups into four groups according to whether they received drugs (1 μM apelin-13, 24 h) or OGD (6 h): (1) control group: without apelin-13 or OGD injury; (2) apelin-13 group: with apelin-13 but no OGD injury; (3) OGD group: with OGD injury but without apelin-13; and (4) OGD + apelin-13 group: with apelin-13 and OGD injury. The TUNEL assay and flow cytometry results showed that compared with the OGD group, apoptosis in the OGD+Apelin-13 group was significantly reduced (p < 0.001). Determination of cell viability under different conditions by CCK-8 assay results displays that Apelin-13 can significantly improve the cell viability percentage under OGD conditions (p < 0.001). Western blotting results showed that apelin-13 decreased the expression ratios of apoptosis-related proteins Bax/Bcl-2 and cleaved-caspase3/caspase3 (p < 0.05), increasing the key to Beclin1-dependent autophagy pathway expression of the protein Beclin1. This finding indicates that apelin-13 protects neurons by strengthening autophagy and attenuating early-stage postspinal cord injury apoptosis in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenge Liu
- Correspondence: ; Tel.: +86-0591-833-578-96
| |
Collapse
|
11
|
Pala M, Meral I, Pala Acikgoz N, Gorucu Yilmaz Ş, Taslidere E, Okur SK, Acar S, Akbas F. Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus. Neurol Res 2022; 44:726-737. [DOI: 10.1080/01616412.2022.2051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mukaddes Pala
- Faculty of Medicine, Department of Physiology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Ismail Meral
- Faculty of Medicine, Department of Physiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nilgun Pala Acikgoz
- Faculty of Medicine, Department of Neurology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şenay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Elif Taslidere
- Faculty of Medicine, Department of Histology and Embryology, Inonu University, Malatya, Turkey
| | - Sema Karaca Okur
- Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Seyma Acar
- Sancaktepe No. 1 Family Health Center, Istanbul, Turkey
| | - Fahri Akbas
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
12
|
Bandopadhyay R, Singh T, Ghoneim MM, Alshehri S, Angelopoulou E, Paudel YN, Piperi C, Ahmad J, Alhakamy NA, Alfaleh MA, Mishra A. Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements. BIOLOGY 2021; 10:1097. [PMID: 34827090 PMCID: PMC8615191 DOI: 10.3390/biology10111097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60-70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Guwahati 781101, Assam, India
| |
Collapse
|
13
|
Angelopoulou E, Paudel YN, Bougea A, Piperi C. Impact of the apelin/APJ axis in the pathogenesis of Parkinson's disease with therapeutic potential. J Neurosci Res 2021; 99:2117-2133. [PMID: 34115895 DOI: 10.1002/jnr.24895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
The pathogenesis of Parkinson's disease (PD) remains elusive. There is still no available disease-modifying strategy against PD, whose management is mainly symptomatic. A growing amount of preclinical evidence shows that a complex interplay between autophagy dysregulation, mitochondrial impairment, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation underlies PD pathogenesis. Identifying key molecules linking these pathological cellular processes may substantially aid in our deeper understanding of PD pathophysiology and the development of novel effective therapeutic approaches. Emerging preclinical evidence indicates that apelin, an endogenous neuropeptide acting as a ligand of the orphan G protein-coupled receptor APJ, may play a key neuroprotective role in PD pathogenesis, via inhibition of apoptosis and dopaminergic neuronal loss, autophagy enhancement, antioxidant effects, endoplasmic reticulum stress suppression, as well as prevention of synaptic dysregulation in the striatum, excessive neuroinflammation, and glutamate-induced excitotoxicity. Underlying signaling pathways involve phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin, extracellular signal-regulated kinase 1/2, and inositol requiring kinase 1α/XBP1/C/EBP homologous protein. Herein, we discuss the role of apelin/APJ axis and associated molecular mechanisms on the pathogenesis of PD in vitro and in vivo and provide evidence for its challenging therapeutic potential.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Zhou JX, Shuai NN, Wang B, Jin X, Kuang X, Tian SW. Neuroprotective gain of Apelin/APJ system. Neuropeptides 2021; 87:102131. [PMID: 33640616 DOI: 10.1016/j.npep.2021.102131] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. In recent years, many studies have shown that the apelin/APJ system has neuroprotective properties, such as anti-inflammatory, anti-oxidative stress, anti-apoptosis, and regulating autophagy, blocking excitatory toxicity. Apelin/APJ system has been proven to play a role in various neurological diseases and may be a promising therapeutic target for nervous system diseases. In this paper, the neuroprotective properties of the apelin/APJ system and its role in neurologic disorders are reviewed. Further understanding of the pathophysiological effect and mechanism of the apelin/APJ system in the nervous system will help develop new therapeutic interventions for various neurological diseases.
Collapse
Affiliation(s)
- Jia-Xiu Zhou
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Nian-Nian Shuai
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Jin
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Kuang
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China.
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
15
|
Hu C, Wang S, Liu L. Long non-coding RNA small nucleolar RNA host gene 1 alleviates the progression of epilepsy by regulating the miR-181a/BCL-2 axis in vitro. Life Sci 2020; 267:118935. [PMID: 33359246 DOI: 10.1016/j.lfs.2020.118935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) have been reported to be involved in regulating epilepsy. The purpose of this study is to investigate the possibly regulatory mechanism of small nucleolar RNA host gene 1 (SNHG1) on epilepsy. METHODS Quantitative real-time PCR was utilized to detect the expression of SNHG1, microRNA (miR)-181a, and B-cell lymphoma-2 (BCL-2). Through an enzyme-linked immunosorbent assay, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (COX-2) were determined. The viability and apoptosis of CTX-TNA2 cells were measured using MTT assay and flow cytometry analysis, respectively. Western blot assay was performed to analyze the protein levels of Bcl-2, BCL2-associated X, and Caspase-3. The relationships between miR-181a and SNHG1/BCL-2 were confirmed by the dual-luciferase reporter assay. RESULTS SNHG1 expression was down-regulated in EP tissues and kainic acid (KA)-induced CTX-TNA2 cells. The apoptosis and release of inflammatory factors (TNF-α, IL-1β, IL-6, and COX-2) in KA-induced CTX-TNA2 cells were suppressed by SNHG1 overexpression and promoted by miR-181a up-regulation. In addition, we confirmed that SNHG1 targeted miR-181a, whereas BCL-2 was a target gene of miR-181a. Negative correlations between SNHG1 and miR-181a, as well as miR-181a and BCL-2 were exhibited. Both the up-regulation of miR-181a and down-regulation of BCL-2 reversed the inhibiting effects of SNHG1 on apoptosis and inflammatory response of KA-induced CTX-TNA2 cells, and the promoting effect upon cell viability. CONCLUSIONS SNHG1 alleviated the progression of EP by modulating the miR-181a/BCL-2 axis in vitro, thus SNHG1 could act as a possible therapeutic target for treating EP.
Collapse
Affiliation(s)
- Chongling Hu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu City, Sichuan Province 610041, China; Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Chongqing City 400030, China
| | - Shiqiang Wang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu City, Sichuan Province 610041, China
| | - Ling Liu
- Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Chongqing City 400030, China.
| |
Collapse
|